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a b s t r a c t

In this paper, a solution procedure is presented for thermo-viscoelastic analysis of composites in a
general form which can be used for general orthotropic materials with simple flat to complicated
geometries with thickness change and curvature. Small deformation problems in which the prediction
of thermal stresses and/or deformations is of interest, are considered. The incremental solution already
available in FE packages is extended to the orthotropic case using available formulations in the literature,
making it more general in the sense of having different relaxations in each orthogonal direction. Only the
viscoelastic response of the polymeric part of the material should be obtained as input and characterisa-
tion tests on the composite material are not needed. The linear orthotropic viscoelastic response of the
composite layer is obtained using self-consistent micromechanics equations in the Laplace domain.
The material model is implemented in the ANSYS subroutine to define the time-dependent thermo-
viscoelastic response of the composite layer. Numerical results are presented which verify the accuracy
and applicability of the modelling procedure. The proposed approach can be used later for the residual
stress analysis of anisotropic materials including full composites and also complex fuselage panels made
of hybrid Fibre Metal Laminates (FMLs).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Polymers exhibit viscoelastic behaviour in the sense of time-
dependency of their properties [1,2]. Composite structures with
polymeric resins may be used for high-temperature applications
in which creep or stress relaxation is present. In order to predict
the performance of composites, time–temperature response of
the anisotropic material needs to be determined within a
thermo-viscoelastic analysis. The viscoelastic property comes from
the isotropic resin but when used in the composite material, the
thermo-viscoelastic response becomes anisotropic. Different
approaches exist in the literature for this purpose that have their
own methodologies and of course limitations. In 1997, Zocher
et al. [3] formulated the thermo-viscoelastic equations for recur-
sive finite elements programming. They assumed that the anisotro-
pic response of the composite is already known and implemented
the recursive equations to integrate the viscoelastic equations for
the anisotropic material with a self-generated finite element code.
Similar formulation is used by Lee in 2000 [4] to predict the cure

induced residual stresses in a AS4/3501-6 composite from the cure
dependent viscoelastic data obtained for the material.

Some researchers have measured the viscoelastic response of
the composite laminate in order to obtain the orthotropic time
dependent stiffness of the material. For example, White and Kim
in 1998 [5] have extracted the epoxy dominated effective stiff-
nesses, i.e. E2(t) and G12(t), directly from stress relaxation tests per-
formed on AS4-3501-6 prepreg. Since there is no stress relaxation
in the fibre direction, other stiffness components were considered
as elastic (time-independent). They have also assumed the com-
posite as transversely isotropic and the Poisson’s ratio of the epoxy
to be constant with temperature and cure. Their finite element
code was limited to plane strain problems like long cylinders.
Thermo-mechanical nonlinear viscoelastic analysis of composites
was performed by Sawant & Muliana in 2008 [6] who presented
a numerical scheme for time-stress dependent modelling of epox-
ies. In their work, a unit cell micromechanical model is incorpo-
rated to obtain the orthotropic viscoelastic properties of the
composite laminate.

A new procedure is presented in this paper using the elastic or
thermo-viscoelastic data of the resin and/or fibre materials. The
linear orthotropic viscoelastic response of the composite material
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is obtained and used as the input to the material model
programmed in the general finite element package ANSYS. The
analysis can be much more general in both anisotropy of the mate-
rial and also the geometry of the composite structure. The material
can be transversely isotropic or orthotropic. Any geometry of the
structural component made of the composite material can be mod-
elled in ANSYS pre-processor with any suitable kind of elements.
Therefore, problems dealing with beam, plane stress, plane strain
and shell type laminates together with 3D solid and solid-shell
type composite structures with any complicated geometry or cur-
vature can be modelled. As another example, problems including
adhesive bonding of reinforcements, repair patches in composite
materials and also splices and doublers in hybrid type ones like
Fibre Metal Laminates (FMLs) with flat or curved geometries with
even change of thickness are possible to model and analyse in
future stages of this study.

In the next phase of this research, orthotropic thermo-
viscoelastic properties of the prepreg layers in GLARE panels will
be obtained using the viscoelastic data from the epoxy and elastic
properties from the glass fibres. The elastic to viscoelastic corre-
spondence principle (Section 2.3) can be used together with the
micromechanics equations in the Laplace domain to get the vis-
coelastic properties for each orthotropic layer. The solution proce-
dure presented here is general for any multi-layered orthotropic
material. It is also needed to mention that the numerical analysis
can be made using the viscoelastic data of the resin with ther-
morheologically simple or complex properties. Therefore, there is
no need to measure dynamic properties of the prepreg or laminate
and the standard polymer characterisation testing suffices to have
the input to the modelling.

2. Theoretical background

In this section, the theoretical formulation of the problem in dif-
ferent cases is reviewed together with the solution methods and
possible approximations. Different problem cases used by different
researchers for analysis of thermo-viscoelastic analysis of compos-
ites, are mentioned. The available formulation is used in the next
section to present a general applied procedure for thermo-
viscoelastic analysis of complex shaped (flat and curved) compos-
ite panels and structures.

2.1. Mathematical definition

The class of problems for which a solution procedure is pre-
sented in this paper, refers to anisotropic materials with a linear
thermo-viscoelastic behaviour. The governing equations of the
aforementioned boundary value problem can be formulated for a
general three dimensional case. Later in the finite element imple-
mentation, this formulation is applied to plane, shell, 3D solid
and 3D solid-shell elements for different modelling approaches.

– Three static equilibrium equations are:

@rji

@xj
þ Fi ¼ 0 ð1Þ

– Linear strain–displacement equations are:

eij ¼ 1
2
ðui;j þ uj;iÞ ð2Þ

In the above equations, rij is the component of the stress vector,
eij is the component of the strain vector, q is density and Fi is the
vector of inertial (body) force. Indices i and j stand for the number
of degrees of freedom that is equal to 3 (x,y,z) for a three dimen-
sional case.

It is known that an orthotropic material has 9 independent
stiffness components. For illustration of the components of stress,
strain and stiffness, three dimensional constitutive equations for
an elastic orthotropic material is written as [7]:
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fegmech: ¼ fegtotal � fegthermal � fegcure � fegmoisture

Note that we will hereafter use the engineering Voigt notation
for components of stress and strain like the left part of Eq. (3) in
which stress/strain vectors, e.g. frig; feig, have 6 components.

In general, all the stiffness components and strains in Eq. (3) can
be time and temperature dependent. However, the components in
which the fibre properties are dominant may be assumed to be
constant with time that simplifies the problem and reduces the
computation time.

The nine time dependent stiffness components for an orthotro-
pic material will be:

C11 ¼ 1� m23 � m32
K

E1ðtÞ; C12 ¼ m21 � m31 � m23
K

E1ðtÞ;

C13 ¼ m31 � m21 � m32
K

E1ðtÞ;

C22 ¼ 1� m31 � m13
K

E2ðtÞ; C23 ¼ m32 � m12 � m31
K

E2ðtÞ;

C33 ¼ 1� m12 � m21
K

E3ðtÞ
C44 ¼ G23ðtÞ; C55 ¼ G13ðtÞ; C66 ¼ G12ðtÞ
D ¼ 1� m12m21ðtÞ � m23m32 � m13m31 � 2m21m32m13

ð4Þ

where Poisson’s ratios are assumed to be constant with time. For a
linear viscoelastic material it only matters how long (t � s) it has
been loaded, so the constitutive equation can be expressed as [1]:

riðtÞ ¼
Z t

0
Cijðt � sÞ @�j

@s
ds ð5Þ

where Cij is the general relaxation stiffness matrix component.
Viscoelastic creep or relaxation response of a material depends

strongly on temperature. In order to apply the effect of tempera-
ture, Eq. (5) should be modified as:

riðtÞ ¼
Z t

0
CijðT; t � sÞ @�j

@s
ds ð6Þ

The above formulation is for an isothermal problem in which
the temperature does not change over time. For thermorheologi-
cally simple materials, the time–temperature superposition (TTS)
principle [2] can be applied and the relaxation stiffness in Eq. (5)
can be written as:

CijðTðtÞ; tÞ ¼ CijðT0; tredÞ

tred ¼
Z t

0
aTðTðtÞÞds

ð7Þ

In the above equations, T0 is the reference temperature, aT is the
time–temperature shift factor and tred stands for reduced time. As a
result, the relaxation curve is obtained in a reference temperature
and the response is calculated at a temperature T for an arbitrary
strain history. Therefore, scaling the time is enough to apply the
effect of constant temperature as a change in the relaxation rate.
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