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a b s t r a c t

The nonlinear problems of static interactive buckling of thin-walled columns with a top hat cross-section
and a lip channel cross-section, which are made of functionally graded materials (FGMs), are considered.
The FG structures are subjected to static compression. The effect of temperature is neglected. It is
assumed that functionally graded materials are subject to Hooke’s law. An interaction of different modes
has been analyzed in detail. Numerous different combinations of buckling modes have been computed. In
all cases the theoretical value of load carrying capacity has been determined.

In order to obtain the equilibrium equations of thin-walled structures from Hamilton’s Principle for the
asymptotic analytical–numerical method. The classical laminate plate theory (CLPT) which has been
modified in such a way that it additionally accounts for the full Green’s strain tensor and the second
Pioli–Kirchhoff’s stress tensor has been applied. The study is based on the numerical method of the
transition matrix using Godunov’s orthogonalization. Distortions of cross-sections and a shear-lag
phenomenon are examined. This paper is a continuation of the study described in the work of the authors
entitled: ‘‘Static interactive buckling of functionally graded columns with closed cross-sections subjected to
axial compression’’ Composite Structures 123, 2015, 257–262.

� 2015 Published by Elsevier Ltd.

1. Introduction

Thin-walled structures subjected to compression or bending
have many different buckling modes. Global buckling modes
always lead to destruction of the structure. Although local buckling
modes change the stiffness of the structure element, these types of
structures are able to sustain load after local buckling. The most
dangerous is the phenomenon of an interaction of global and local
buckling modes, which significantly accelerates the process of
structural damage. To determine the theoretical value of load car-
rying capacity, a modal interaction of buckling modes and imper-
fections has to be considered in the nonlinear post-buckling
analysis. The investigation of buckling interaction requires an
application of a nonlinear theory that enables estimation of an
influence of different factors on the structure behavior.

The concept of interactive buckling (the so-called coupled buck-
ling) involves the general asymptotic theory of stability [1].
Koiter’s theory [2,3] is the most popular one, due to its general

character and development, even more so after Byskov and
Hutchinson [4] derived a complete set of formulas for the post-
buckling constants associated with an interaction between modes.
The theory is based on asymptotic expansions of the post-buckling
path and is capable of considering nearly simultaneous buckling
modes. The expression for potential energy of the system is
expanded into a series relative to the amplitudes of linear modes
near the point of bifurcation, which generally corresponds to the
minimum value of critical load (the so-called bifurcation load). In
the potential energy expression for the first order nonlinear
approximation, the coefficients of cubic terms are the key terms
governing the interaction. In the case the critical values
corresponding to global buckling modes are significantly lower
than local modes, their interaction can be considered within the
first nonlinear approximation [5–9]. It is possible as the post-buck-
ling coefficient for uncoupled buckling is equal to zero for the sec-
ond order global mode in the Euler column model, and it is very
often of little significance in the case of an exact solution. The theo-
retical load carrying capacity, obtained within the frame of the
asymptotic theory of the nonlinear first order approximation, is
always lower than the minimum value of critical load for the linear
problem and the imperfection sensitivity can be obtained only.
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The consideration of displacements and load components in the
middle surface of walls within the first order approximation, as
well as precise geometrical relationships enabled the analysis of
all possible buckling modes, including mixed buckling modes
(e.g., the flexural–distorsional or local-distorsional mode – for a
more detailed analysis, see [6,10–15]). In thin-walled structures
of open cross-sections, due to their low rigidity, it is necessary to
consider distortional deformations. The determination of the
post-buckling equilibrium path requires the second order approxi-
mation to be taken into account. The numerical calculations pre-
sented in [16,17] have proven that an interaction of local modes
having considerably different wavelengths is either very weak or
does not occur at all. The expansion of Byskov and Hutchinson
[4] is concerned with a number of interacting modes (local or
global), but their examples are limited to one local and one global
mode. In the paper by Byskov et al. [18], an interaction of global
(overall) modes is treated with the Byskov and Hutchinson’s
method [4]. An interaction of buckling modes can occur among
several buckling modes symmetric with respect to the symmetry
axis of the cross-section and also between a symmetric mode
and pairs of antisymmetric modes [6,19,20]. Dubina in [11] paid
special attention to an interaction of global modes of buckling with
a distortional and/or localized mode. An interaction of these buck-
ling modes is strong according to the classification. In some cases,
an improper selection of the mode, even if a few of them are con-
sidered, can lead to an overestimation of the structure load carry-
ing capacity; also the consideration of the two-mode approach
may sometimes be misleading and yield false conclusions. This
task can be accomplished only by means of a nonlinear analysis
[19,20]. Koiter and van der Neut [2] have proposed a technique
in which an interaction of an overall (Euler) mode with two local
modes having the same wavelength (i.e., three-mode approach)
has been considered. The fundamental local mode is henceforth
referred to as the ‘‘primary’’ one and the nontrivial higher mode
(having the same wavelength as the ‘‘primary’’ one), corresponding
to the mode triggered by the overall long-wave mode, is called
‘‘secondary’’.

Since the late 1980s, the Generalized Beam Theory (GBT)
[10,21–23], pioneered by Schardt, has been developed extensively.
Recently, a new approach has been proposed, i.e., the constrained
Finite Strip Method (cFSM) [24–28]. These two alternative modal
approaches to analyze the elastic buckling behavior have been
compared in [29–31]. For the latest trends in the development of
the GBT, see for example [32–38]. In these papers special attention
is focused on an effect of global and local distortional modes on the
load carrying capacity of structures.

In the literature, there are no studies on interactive buckling of
functionally graded structures (the so-called FG structures). Some
results have been published by the authors of this paper in
[39,40]. In [39], the nonlinear Koiter’s theory has been used to
explain an effect of the imperfection sign (sense) on local post-
buckling equilibrium paths of plates made of functionally graded
materials (FGMs). In the case of the functionally graded square
plate, nonzero first-order sectional inner forces that cause an
occurrence of nonzero post-buckling coefficients responsible for
sensitivity of the system to imperfections appear. It results in the
fact that post-buckling equilibrium paths of plate structures made
of FGMs are nonsymmetrically stable. This explains the differences
in the plate response dependence on the imperfection sign (sense).
The semi-analytical method (SAM) and finite element method
(FEM) numerical results have been presented.

In [40], the static coupled buckling of thin-walled columns with
trapezoidal and square cross-sections, which are made of function-
ally graded materials, have been considered. A three-mode
approach has been adopted. In the case of interactive buckling of
the structure with one axis of symmetry of the cross-section, the

secondary local buckling mode has been a supplementary mode
in the analysis of coupled buckling. Attention has been drawn to
the effect of the imperfection sign (sense) and the nonsymmetric
stable post-buckling equilibrium path on the load carrying
capacity.

A comprehensive review of the literature concerning the inter-
active buckling analysis of structures can be found in [2,41]. Most
of the papers describe the behavior of thin-walled columns made
of isotropic, orthotropic or composite materials under mechanical
loads. One can find some papers in which the uncoupled buckling
behavior of thin-walled elements made of FGMs under compres-
sion (e.g., plates [42,43]) is presented. The nonlinear post-buckling
analysis of this type of elements devoted to basic types of loads is
covered in the monograph by Hui-Shen [44]. Also, thermal buck-
ling and post-buckling analyses have been made for functionally
graded thin-walled elements [45]. Due to the complexity of buck-
ling problems of functionally graded plates under compound
mechanical and thermal loads, the FEM is the only solution possi-
ble. Therefore, in the literature one can find many papers which
present results of solutions to different problems of functionally
graded structure buckling, obtained with an application of the
FEM, for example [46–48].

2. Formulation of the problem

Thin-walled prismatic columns of the length l are considered. A
plate model of the thin-walled structures has been applied. The
boundary conditions for the column are taken as simply supported
at their ends. The FG plates are made of an Al–TiC metal-ceramic
material which is subject to Hooke’s law [49]. The material proper-
ties are assumed to be temperature independent. In the present
study, the classical laminate plate theory (CLPT) is used to obtain
the equilibrium equations (Appendix A) [50]. In [51], Reddy has
shown that the classical laminate plate theory is sufficiently
accurate.

The geometrical relationships (i.e., full Green’s strain tensor) are
assumed in order to enable the consideration of both out-of-plane
and in-plane bending of the plate [7,12,13,15,20,39–41,52,53]:
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1
2
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;x þ u2

;xÞ
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1
2
ðw2

;y þ u2
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2exy ¼ cxy ¼ u;y þ v ;x þw;xw;y þ u;xu;y þ v ;xv ;y

ð1Þ

and

jx ¼ �w;xx jy ¼ �w;yy jxy ¼ �2w;xy ð2Þ

where: u; v; w – are components of the displacement vector of the
plate in the x; y; z axis direction, respectively, and the plane x—y
overlaps the mid-plane before its buckling.

The nonlinear problem of stability has been solved with the
asymptotic perturbation method. Let k be a load factor. The dis-
placement fields U and the sectional force fields N (Koiter’s type
expansion for the buckling problem) have been expanded into
power series with respect to the dimensionless amplitude of the
rth mode deflection fr (normalized in the given case by the condi-
tion of equality of the maximum deflection to the thickness of the
first component plate h1) (see [2,41]):

U � ðu;v ;wÞ ¼ kU0 þ frUr þ frfqUqr þ � � �
N � ðNx;Ny;NxyÞ ¼ kN0 þ frNr þ frfqNqr þ � � �

ð3Þ

where the pre-buckling (i.e., unbending) static fields are U0; N0, the
first order nonlinear fields are Ur; Nr (eigenvalues and eigenvectors
problems), and the second order nonlinear fields – Uqr; Nqr , respec-
tively. The range of indexes is [1, J], where J is the number of
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