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a b s t r a c t

We study the numerical solution of thermally convective viscoplastic fluids with yield stress. Following
[12], a Bousinessq approximation of the convection effect is considered. The resulting coupled model is
then regularized by means of a local regularization technique. After discretization in space, a second
order BDF method is used for the time discretization of the regularized problem, leading, in each time
iteration, to a nonsmooth system of equations, which is amenable to be solved by generalized Newton
methods. A semismooth Newton algorithm with a modified Jacobian is constructed for the solution of
the discrete systems. The paper ends with a detailed computational experiment that exhibits the main
properties of the numerical approach.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The understanding of heat transfer in viscoplastic fluid flow,
and its effects on the different material regions, is nowadays a
challenging topic in the study of materials with yield stress.
Although it is clear that the temperature distribution has an effect
on how the rigid zones of the material evolve, a precise determina-
tion of such effect, of important practical consequences, has not yet
been studied in depth.

A complete model which involves both phenomena demands
quite complicated mathematical and computational tools. Re-
cently, a Bousinessq approximation has been studied for the
understanding of such coupled phenomena in the Rayleigh–Bénard
convection context (cf. [12]). Moreover, in order to track the inter-
face between rigid and fluid regions numerically, the authors in
[12] consider an Uzawa type technique, which results in an accu-
rate, but rather slow, solution algorithm.

Typically, for the numerical simulation of viscoplastic materials
either a first order method for the original non-differentiable prob-
lem (in the convex case) or a second order approach for a globally
regularized version of the model are considered. The former pro-
vides a good approximation of the solution and its correspondent
material properties, but is computationally slow and highly mesh
dependent. On the other hand, regularization approaches allow

the use of efficient numerical techniques but important qualitative
properties may get lost at the obtained solution if the used regular-
ization is too general [3,8].

A challenge in this respect consists in designing a mixed numer-
ical strategy, which allows to obtain an accurate solution (includ-
ing material properties) with a fast convergent method. In this
respect, the combination of semismooth Newton algorithms with
a local regularization of the dual multiplier has been recently suc-
cessfully considered [5,6].

In this paper, we aim at extending the approach developed in
[6] to the case of the coupled heat-fluid flow phenomena, i.e., we
consider a second order BDF time discretization of a properly reg-
ularized coupled model and solve, in each time step, a nonsmooth
system of equations by means of a semismooth Newton algorithm.
To do so, we consider a lag operator, as proposed in Baker et al. [1]
for the Navier–Stokes equations, and applied it to the coupled
model. This strategy, combined with a semismooth Newton meth-
od, leads to a fast second order approach for the simulation of the
convective viscoplastic flow.

2. Problem statement and regularization

We start by considering a square cavity with thermally insu-
lated lateral walls. The upper and lower walls are assumed to be
at temperatures 0 and h1, respectively. We use a Boussinesq
approximation and the Rayleigh–Bérnard convection model devel-
oped in [11,12], i.e., we look for a velocity vector field u and a tem-
perature distribution h such that
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1
Pr
ð@t þ u � rÞu� Du�r � sþrp ¼ Rahẑ ð2:1aÞ

r � u ¼ 0 ð2:1bÞ

s ¼ Bi
Eu
kEuk ; ifEu – 0 ð2:1cÞ

ksk 6 Bi; ifEu ¼ 0 ð2:1dÞ
ð@t þ u � rÞh ¼ Dh ð2:1eÞ

where ẑ represents the unit vector in the upward direction and k � k
stand for the Frobenius norm. Here Bi; Pr and Ra are the Bingham,
Prandtl and Rayleigh numbers, respectively. They are given by

Bi ¼ sy

qbgdT L
; Pr ¼ m

a
and Ra ¼ bgdT L3

am
;

where m stands for the kinematic viscosity, a for the thermal diffu-
sivity, b for the coefficient of thermal expansion, g for the accelera-
tion due to gravity, q for the density of the material, sy for the
yield stress and L for the vertical separation of the cavity walls. Fur-
ther, dT represents the temperature difference between the plates
(see Fig. 1).

Let us briefly discuss on the boundary and initial conditions
considered. For the temperature evolution equation, we impose
that

h ¼
h1; for 0 6 x1 6 1 and x2 ¼ 0
0 for 0 6 x1 6 1 and x2 ¼ L

�
@h
@n ¼ 0 on CN

hð0Þ ¼ h0;

ð2:2aÞ

where CN stands for the lateral walls. The condition on CN repre-
sents the isolation condition on the lateral walls. For the flow a
no-slip boundary condition is imposed on the whole boundary:

u ¼ 0 on C

uð0Þ ¼ u0:
ð2:2bÞ

From model (2.1) it can be observed that the constitutive relation
(2.1c) is only valid in the sectors where the shear rate tensor is dif-
ferent from zero, while no relation holds in the remaining regions.
The model constitutes therefore a free boundary problem.

In order to obtain a numerical solution for (2.1) the flow vector
field together with the regions where the material moves with
plastic deformation (Eu – 0) and the regions where the material
behaves like a rigid solid (Eu ¼ 0) have to be determined. This task
can be accomplished either by using direct projection techniques
or regularization approaches (see [7] and the references therein).

As mentioned in the introduction, our approach consist in using
a local regularization considering both primal and dual informa-
tion. More precisely, if we consider (2.1c) and (2.1d), the following
equation can be verified to hold:

max 0; kEukð Þs ¼ BiEu: ð2:3Þ

Since the main difficulty of the latter corresponds to the case where
Eu ¼ 0, we consider the following regularized version of (2.3):

max
Bi
c
; kEuck

� �
sc ¼ BiEuc; ð2:4Þ

where c� 1 corresponds to the regularization parameter.
The proposed methodology leads therefore to the following reg-

ularized dual multiplier (non-Newtonian component of the stress
tensor):

sc ¼
Bi Euc
kEuck ifkEuckP Bi

c

cEuc ifkEuck < Bi
c

8<: ð2:5Þ

Note that (2.5) can also be obtained, in the case of steady state Bing-
ham flow, from the dual problem by using a Tikhonov regulariza-
tion technique (see [6]). Moreover, the resulting regularized
problem is also related to the bi-viscosity approximation proposed
by Beverly and Tanner [2].

Altogether, we obtain the following regularized coupled system
of partial differential equations:

1
Pr
ð@t þ uc � rÞuc � Duc � $ � sc þrpc ¼ Rahcẑ ð2:6aÞ

r � uc ¼ 0

sc ¼
Bi Euc
kEuck if kEuckP Bi

c

cEuc if kEuck < Bi
c

8<: ð2:6bÞ

ð@t þ uc � rÞhc ¼ Dhc; ð2:6cÞ

with the boundary and initial conditions (2.2a) and (2.2b) for the
temperature and flow equations, respectively.

As was proved in [5,6], the proposed type of regularization turns
out to be consistent, i.e., the regularized solutions converge to the
original one as the parameter c tends to infinity.

3. Numerical treatment

Hereafter, the superscript h will be used for the discretized
functions, and the notation diagð~aÞ stands for a diagonal matrix
with the components of the vector ~a in the diagonal.

3.1. Space discretization

Consider a suitable discretization in space (either by finite ele-
ments or finite differences). We therefore obtain the following
semi-discretized approximation for the flow Eqs. (2.6a) and (2.4):

1
Pr

Mh@h
t uhðtÞ þ AhuðtÞ þ 1

Pr
ðuhðtÞ � rhÞuhðtÞ þ rh � shðtÞ

þrhphðtÞ � RaMhhhðtÞẑ ¼ 0 ð3:1aÞ

�ðrhÞ>uhðtÞ ¼ 0 ð3:1bÞ

diagðmhÞshðtÞ ¼ EhuhðtÞ: ð3:1cÞ

where mh :¼max Bi
c
~e;NðEhuhðtÞÞ

� �
;~e denotes the vector of all ones,

and uhðtÞ; shðtÞ and phðtÞ are the time-dependent discrete approxi-
mations for the velocity, the regularized stress tensor and the
pressure, respectively. Further, uh

0ðtÞ stands for the discrete approx-
imation of the initial condition and Mh corresponds to the vectorial
mass matrix in the case of finite elements or to the identity matrix
in the case of finite differences. Ah is the discrete approximation of
the vectorial Laplacian, and $h andrh are matrices representing the
discrete versions of the vectorial divergence and the scalar gradient,Fig. 1. Geometry of the problem.
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