Composite Structures 129 (2015) 143-156

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

Torsional responses of steel fiber-reinforced concrete members

Hyunjin Ju^{a,1}, Kang Su Kim^{a,*}, Deuck Hang Lee^{a,2}, Jin-Ha Hwang^{a,2}, Seung-Ho Choi^{a,2}, Young-Hun Oh^{b,3}

^a Department of Architectural Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea
^b Department of Architectural Engineering, Konyang University, 121 Daehak-ro, Nonsan, Chungnam 320-711, Republic of Korea

ARTICLE INFO

Article history: Available online 13 April 2015

Keywords: Torsion Steel fiber SFRC Torsional behavior Bond strength Tensile constitutive model

ABSTRACT

This study introduces two analytical approaches to estimate the torsional behavior of steel fiber reinforced concrete (SFRC) members. The first approach utilized the tensile constitutive relationship of SFRC in tension derived from SFRC panel test results, and the second approach adopted the direct tension force transfer model, which were applied to the smeared-truss model. In addition, three torsional members including two SFRC specimens with large amounts of transverse reinforcement were tested, and twenty-three SFRC torsional specimens were collected from literature to verify the proposed models. From this study, it appears that the proposed approaches provide enhanced analysis accuracy in estimating the torsional capacities of SFRC members, and closely capture their overall torsional responses compared to other models examined in this study.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Steel fiber-reinforced concrete (SFRC) is a type of advanced composite material, in which conventional concrete is mixed with steel fibers having short length and diameter. SFRC is considered, in modern civil engineering and material science field, an alternative material to improve the brittle material characteristics of conventional concrete [1]. Many studies have been conducted since the 1960s on the tensile, flexural, and shear behavior of SFRC [1,2] members, and the superiority of its structural performance has been repeatedly substantiated. On this basis, it is expected that there will be growing demand for SFRC as a high-performance composite material in the construction market in the future. While the existing researches on SFRC, however, focused mostly on its tensile [3–6], shear [7–10], and flexural behavior [11,12], the number of studies on the torsional behavior of SFRC is still limited. It becomes now more important to consider torsional actions in design office than before, because modern buildings and civil infrastructures often include complex asymmetric structures or even free-form shapes.

* Corresponding author. Tel.: +82 2 6490 2762; fax: +82 2 6490 2749.

E-mail addresses: fis00z@uos.ac.kr (H. Ju), kangkim@uos.ac.kr (K.S. Kim), dklee@uos.ac.kr (D.H. Lee), jinhahwang@uos.ac.kr (J.-H. Hwang), ssarmilmil@ hanmail.net (S.-H. Choi), youngoh@konyang.ac.kr (Y.-H. Oh).

Comprehensive understanding of the behavioral mechanisms of a SFRC member subjected to torsion is also becoming an important issue as its application increases [13]. However, torsional behavior of SFRC is not simple or easy to estimate accurately, due to complex inter-related mechanisms among the aggregate interlocking at crack surface [14], the dowel action of reinforcement [2,15,16], and in addition, the directionality [11] and bond performance of the steel fibers at crack interface. Also, force equilibrium and deformation compatibility in the three-dimensional body considering the effect of the strain gradient developed in the shear flow zone should be properly considered in the torsional analysis [17–19]. Some investigations were conducted on the torsional strength and behavior of SFRC members, but most such research focused on providing an empirical or semi-empirical design expression based on limited experiment results [20-22]. Since 1980s experimental and theoretical studies on torsion of

SFRC members have been conducted by many researchers, and it is known that the addition of steel fibers into conventional concrete can enhance the stiffness, ultimate strength, rotational capacity and ductility, and crack control performance of torsional members [20–23]. Mansur and Paramasivam [24] and Craig et al. [22] simply adopted the tensile strength of SFRC for their torsional strength models, under the assumption that SFRC is a completely composite material made of steel fibers and concrete. This simple method, however, generally requires excessive experimental efforts through the various ranges of key influential factors. Narayanan and Kareem-Palanjian [20] proposed a torsional strength model by summing the torsional contributions of plain concrete (T_p), reinforcing steel (T_r), and steel fiber (T_f), which

CrossMark

¹ Tel.: +82 2 6490 5576; fax: +82 2 6490 2749.

² Tel.: +82 2 6490 5417; fax: +82 2 6490 2749.

³ Tel./fax: +82 41 730 5615.

Notations

lo	area enclosed by the centerline of shear flow, taken as $(A_c - (0.5)p_ct_d + t_d^2)$	W _d W _{sfrc}
c	cross-sectional area bounded by the outer perimeter of	α_2
	cross-sectional area of longitudinal steels	в
-1 +	cross-sectional area of one leg of stirrups	r V21
}	cross sectional width of member	721 Vit
τ mull	curve-fitting coefficient	δ_{sf}
f,pun	diameter of fiber	ε ₀
c c	elastic modulus of concrete	ε1
s	elastic modulus of the steel bars	ε ₂
sf	elastic modulus of the steel fiber	ε_{1s}
,	fiber factor	ε_{2s}
, 5	specified compressive strength of concrete	€ _{cr}
cr	stress in concrete at cracking	ε _d
cr.f	stress in concrete or SFRC at cracking	E _{ds}
ct	direct tensile strength of material	ε_l
!	stress of steel used in longitudinal directions	ε_n
'y	yield stress of steel used in longitudinal directions	ε _r
1	average yield stress of the embedded steel bars	E _{rs}
r	modulus of rupture	\mathcal{E}_{S}
5	average stress of steel bars	$\varepsilon_{sf,a}$
sp	splitting tensile strength of concrete	
ty.	yield stress of steel used in stirrups	$\mathcal{E}_{sf,b}$
t	stress of steel used in transverse directions	
v.	yield stress of bare steel bars	\mathcal{E}_t
	cross sectional height of member	Ey
с	ratio of the average compressive stress to the peak com-	ζ
	pressive stress in the concrete strut	η
sf	ratio of the average tensile stress to the maximum ten-	η_0
	sile stress of the steel fibers on the SFRC crack surface	η_l
t	ratio of the average tensile stress to the tensile cracking	0
	longth of fiber	θ_u
	perimeter of the centerline of shear flow taken as	ρ
0	$(p_c - 4t_d)$	$ ho_f$
h	perimeter of the centerline of closed stirrup, taken as	$ ho_l$
	$(2(x_0 + y_0))$	ρ_t
с	perimeter of the outer concrete cross section	σ_1^{ι}
cr	crack spacing control factor	sf
	shear flow	σ_1^{j}
	ratio of fiber cross section to its perimeter	σ_2^{c}
	spacing of transverse noop dars(stirtups)	σ_{d}^{c}
	torsional moment	o max
с	the strength attributable to concrete	o _r
d	the contribution of fibers to the ultimate torsional	o_r
f	capacity	σ_l
	capacity	σ_t
n	torsional moment of plain concrete	τ^{c}
р	contribution of conventional reinforcement to ultimate	$\frac{\iota_{21}}{\tau_{1}}$
r		τ_{lt}
	shear flow zone	τ_u
1	volume fraction of steel fiber	τ_{uf}
v	smaller and larger sides of rectangular cross section	vu,pull
, y 1 V.	smaller and larger center-to-center dimensions of stir-	ΨC
	sinance and larger center to center annendrond U Jul-	Ψt

 x_0, y_0 smaller and larger center-to-center dimensions of stirrup in model

was determined from the space truss model [25]. In this model, it is assumed that concrete and steel fibers behave independently, and the torsional strength contribution of steel fibers is simply added into the torsional strength of a conventional reinforced

I	crack width of SFRC at the onset of decay
frc	crack width of SFRC member
	angle of applied principal compressive stress with re-
	spect to <i>l</i> axis
	deviation angle $(\alpha_2 - \alpha)$
1	average shear strain in the <i>L</i> - t coordinate
	average shear strain in the $l - l$ coordinate
	the amount of fiber puriout $(w_{sfrc} - w_d)$
	average strain in the 1-direction
	average strain in the 2-direction
	average surface strain in the 1-direction
	average surface strain in the 2-direction
	cracking strain
	average principal compressive strain
	maximum principal compressive strain
	average strain in the <i>l</i> -direction
	average yield strain of the embedded steel bars
	average principal tensile strain
	maximum principal tensile strain
	average strain of the steel bars
,а	average tensil strain in crack surface when steel fibers
	reach at average unimate bond strength
,b	is w.
	average strain in the t-direction
	vield strain of the bare steel bars
	softened coefficient of concrete in compression
	reinforcement index, taken as $(A_t f_{tv} p_h)/(A_l f_{lv} s)$
	length difficiency factor
	orientation factor for fiber
	angle of twist per unit length
	ultimate angle of twist per unit length
	steel ratio
	bond factor that accounts for differing bond characteris-
	ucs of the liber
	volume fraction of transverse steel(stirrups) used
	average normal stresses of concrete or SERC in the 1-di-
	rection
f	average normal stresses of steel fibers in the 1-direction
	average normal stresses of concrete in the 2-direction
	average principal compressive stress in conrete
nax	average maximum bond strength of steel fiber
	average principal tensile stress in concrete
	average principal tensile stress in SFRC
	applied normal stresses in the <i>l</i> -direction
	applied normal stresses in the <i>t</i> -direction
и	applied shear stresses in the 2-1 coordinate
1	applied shear stresses in the $l - t$ coordinate
	ultimate bond strength of fiber
ç	ultimate bond stress of steel fiber
null	maximum interfacial shear strength during pullout
Pun	curvature of the concrete struts along the 2-direction
	curvature of the concrete struts along the 1-direction

concrete member. El-Niema [21] also proposed a torsional strength equation for a SFRC beam by adding the torsional contribution of steel fibers (T_f) to the torsional strength presented by ACI318-83 [26] code. In particular, for the torsional members with no

Download English Version:

https://daneshyari.com/en/article/6706687

Download Persian Version:

https://daneshyari.com/article/6706687

Daneshyari.com