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a b s t r a c t

The use of multi-scale procedures is encouraged by the continuous increase of computational capacity,
but it is still a challenge performing a non-linear analysis of real composite structures without the aid
of large computers. This work proposes a strategy to conduct non-linear multi-scale analysis in an effi-
cient way. The proposed method considers that in a large structure, in general, material non-linear pro-
cesses only take place in a localized region (or in a reduced number of finite elements, if a FE method is
used). The strategy determines the elements that require a non-linear analysis defining of a non-linear
activation function that accounts for the failure of the most critical point in the microstructure. The pro-
cedure conserves the dissipated energy through the scales, being mesh independent as the mesh objec-
tivity concept is extended to the microstructure. The validity of the strategy proposed is proved with the
analysis of academic examples showing not only the mesh independency but also the reduction of com-
putational cost. Finally, an industrial composite component is solved using a standard computer, showing
that the proposed strategy is capable of reducing the computational cost from 32 days and 14 hours
(required by a classical multi-scale method) to less than 12 hours.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are not like simple materials because they
are internally a complex structure. Therefore, composites required
specific formulations that the ones used in single materials. For a
linear analysis or a study of maximum load it is enough with one
orthotropic material characterization and a law with some com-
plexity to predict the break of the structure (such as, maximum
strain criterion [1], tsai-wu criterion [2], etc). However, numerical
methods have allowed the simulation of structures beyond their
elastic limit, and then it is possible obtain the post critic behavior
of the structure and its tenacity and structural integrity can be
estimate.

The complexity of composites has promoted that different for-
mulations appear to predict their behavior, which are more o less
suitable according to computational cost available, the accuracy

in the results desired or even the expected failure type. In the fol-
lowing, some of the most relevant formulations are described.

One possibility to simulate structures of composite materials
which have complex microstructures is to use phenomenological
homogenizations. The most common method is the classical mix-
ing theory, which obtains the behavior of the composite from the
mechanical performance of the composite components, these are
simulated with its own constitutive law [3]. Afterward, Oller [4]
generalizes the theory to enable the resolution of any composite
with reinforced matrix, without the limitation required by the
compatibility equation. On the other hand, in the SP [5] continuum
approach the mechanic characteristic of the composite are
obtained using the properties of each component and taking into
account its topological distribution. This serial/parallel (SP) mixing
theory assumes a serial-parallel self-adjusting behavior to the
topological distribution of fiber embedded in the matrix of the
composite material. Recently, one extension of the mixing theory
for the study of matrices reinforced with nanotubes has also been
developed [6]. All these theories have proved to be able to repro-
duce not only mechanic properties of composites but to solve
non-linear problems also [7–9]. It is necessary to say that in some
particular cases, when the damage is located in one lamina, how in
a delamination process, the SP theory may lack accuracy [10].
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To simulate laminated composites, one alternative to the previ-
ous methodologies described is the Discrete Damage Mechanics
(DDM) models [11,12]. The stiffness reduction due to transverse
matrix cracking in laminates with symmetric but with arbitrary
laminate stacking sequence, subject to in-plane stress, is obtained
for the laminae [11]. The properties of the damaged laminates only
depend of the crack densities of the damaged laminae. The crack
density evolution is derived in term of the strain energy release
rate. This procedure showed that it can predict the initiation and
evolution of the matrix cracking, and the stress redistribution in
the laminae. Recently, the described method was extended to pre-
dict the laminate failure throughout including fiber failure [13]. A
Weibull statistical distribution is used to characterize fiber failure
and it is incorporated to [11] using a simple fiber damage model.
Therefore, the laminate properties now depend of the fiber damage
in the laminae too.

On the other hand, Sanchez-Palencia [14] and Suquet [15] laid
the foundation of what today is known as first-order homogeniza-
tion methods. The macroscopic deformation gradient tensor is
used to solve the problem at the microstructural scale and then
the macroscopic stress tensor is obtained using the averaging
equation [16,17]. Later, Suquet uses the method of average
described to solve and extend the problem of two scales to
non-linear range [18]. Over time, thanks to the work to several
authors, the method was extended to large deformations with arbi-
trary non-linear material behavior at the microsctructural scale
[19–24].

Geers and Kouznetsova proposed what is called second-order
homogenization [25–27], which is an extension of the first-order
theory. In this case, the macroscopic deformation gradient tensor
and its Lagrangian gradient is used to solve the boundary value
problem at the microstructural scale. The second-order approach
allows solve problems in the presence of localization phenomena
without loss of precision in the solution because the Lagrangian
tensor is taken into account. The main drawbacks of this method
are its computational cost and complex implementation.

Continuous–discontinuous homogenization method has been
developed in the context of masonry [28]. The methodology incor-
porates a localization band in the macrostructural scale and using
the first-order homogenization concepts solve the damaged zone
(in the localization band) and the undamaged zone. However, the
localization band has a fixed size and need to be located at the
beginning. Besides, the approach loses the benefits of the homoge-
nization ideas and it is more similar to a domain decomposition
with a refined subscale. Other phenomenological and homogeniza-
tion models specifically applied to masonry can be found in refer-
ences [29–31].

Computational homogenization approach is adopted to solve
interface volume with cohesive zone [32]. The cohesive zone (using
a traction-opening concept) is coupled with a microstructural scale
with finite dimension. The boundary value problem at the
microstructure is solved using the macrostructural scale kinemat-
ics (interface opening vector).

The approach used in current work is a multi-scale homoge-
nization based on a Representative Volume Element (RVE) or unit
cell concept. The RVE has a microstructural subregion geometry

which is representative of the entire microstructure. The boundary
value problem on the structural scale and in the microstructural
scale (RVE) is solved by the Finite Element (FE) method (see
Appendix A). With this approach, it is necessary to solve the RVE
each time that the macrostructural model requires information
about its performance, this is why this kind of solution procedure
is known as FE2.

Most of the work on FE2 multi-scale procedures are done on
analyzing the numerical performance of RVE [33,34] or on connect-
ing different scales [35]. In general, in this kind of homogenization
methods the elastic properties of the microstructure are obtained
solving the microstuctural problem at the beginning of the struc-
ture problem. However, the problem with these methods is their
computational cost for a non-linear analysis because it is required
solving the RVE in every integration point at the macrostructural
problem and for every time step to know the non-linear limit
and then the behavior of the microstructure in non-linear range.
Non-linear performance has also the problem that the dissipated
energy of both scales is not always related [36].

In order to improve the computational cost of the multi-scale
homogenization some strategies use model-order reduction tech-
niques [37–39]. These methods use the Proper Orthogonal
Decomposition (POD) to obtain the reduced set of empirical shape
functions. Besides, [39] proved that the common approach of
replacing the non-affine term by an interpolant constructed taking
only POD modes arrives to ill-posed formulations. An enriched
approximation space with the span of the gradient of the empirical
shape functions is proposed to avoid this ill-posedness. However,
these kind of procedures do not solve the complete structure.

Here it is proposed a new procedure to reduce computational
cost of multi-scale simulation. The paper looks also into the prob-
lem of localization and energy dissipation across the scales, as the
proposed method must be consistent [40]. It is important to note
that the procedure developed takes and extends the two-scale
homogenization proposed by Otero et al. [10] (see Appendix A).

In the following the formulation and algorithm schemes of the
proposed procedure is described. Afterwards, Section 3 presents
theoretical framework and its extension to multi-scale methods
of the consistent energy dissipation problem. The numerical vali-
dation and one industrial application using the developed method
is shown in Section 4. Finally in last section the conclusions of this
work are exposed.

2. New procedure to reduce the computational cost of a multi-
scale analysis

The main advantage of the FE2 method related to a micro model
is the reduced computer memory requirements. To solve the same
problem, the amount of memory required by the classical FE micro
model method is substantially larger than FE2 procedure [10]. This
difference is found because the memory used is proportional to the
FE mesh size and, while the FE micro model has to solve a problem
with a very small discretization, the FE2 procedure only requires
memory for the macrostructural problem and the RVE that is being
solved. However, if the material reaches non-linear behavior, the
computational cost of FE2 method becomes as large as the one
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