
The polar analysis of the Third-order Shear Deformation Theory
of laminates

Marco Montemurro ⇑
Arts et Métiers ParisTech, I2M CNRS UMR 5295, F-33400 Talence, France

a r t i c l e i n f o

Article history:
Available online 9 June 2015

Keywords:
Anisotropy
Polar method
Genetic algorithms
Composite materials
Structural design
Third-order Shear Deformation Theory

a b s t r a c t

In this paper the Verchery’s polar method is extended to the conceptual framework of the Reddy’s
Third-order Shear Deformation Theory (TSDT) of laminates. In particular, a mathematical representation
based upon tensor invariants is derived for all the laminate stiffness matrices (basic and higher-order
stiffness terms). The major analytical results of the application of the polar formalism to the TSDT of lam-
inates are the generalisation of the concept of a quasi-homogeneous laminate as well as the definition of
some new classes of laminates. Moreover, it is proved that the elastic symmetries of the laminate shear
stiffness matrices (basic and higher-order terms) depend upon those of their in-plane counterparts. As a
consequence of these results a unified formulation for the problem of designing the laminate elastic sym-
metries in the context of the TSDT is proposed. The optimum solutions are found within the framework of
the polar-genetic approach, since the objective function is written in terms of the laminate polar param-
eters, while a genetic algorithm is used as a numerical tool for the solution search. In order to support the
theoretical results, and also to prove the effectiveness of the proposed approach, some new and meaning-
ful numerical examples are discussed in the paper.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As well known, the Classic Laminate Theory (CLT) together with
the First-order Shear Deformation Theory (FSDT) are the simplest
theories employed for describing the mechanical behaviour of a
composite laminate considered as an equivalent homogeneous
(generally) anisotropic plate. Such theories properly describe the
laminate kinematic response in the case of small (CLT) or moderate
(FSDT) values of the plate characteristic aspect ratio (i.e. the ratio
of its thickness to its shorter side). However, the major drawback
of these theories is in the estimation of the influence of the lami-
nate transverse shear stiffness on its mechanical response (which
becomes more and more important for thick plates). On one hand,
in the case of the CLT the laminate transverse shear stiffness does
not intervene in the definition of the laminate constitutive equa-
tion (making this theory adequate only for thin laminates). On
the other hand, in the framework of the FSDT the influence of
the transverse shear stiffness is taken into account within the
definition of the laminate constitutive behaviour. Nevertheless,
due to the kinematic model on which the FSDT relies, the

through-the-thickness shear stresses are constant within each con-
stitutive layer, leading in this way to a mechanical contradiction.
Indeed, the shear stresses do not satisfy: (a) the boundary condi-
tions on the external faces of the laminate, (b) the local equilibrium
equations (elasticity solution) and (c) the continuity condition at
the layers interface, see [1]. To overcome these contradictions, it
is common to introduce the so-called ‘‘shear correction factor’’
[1,2] which generally satisfies only two of the previous three con-
ditions. However, in the context of the FSDT, the definition of the
shear correction factor is immediate only for isotropic plates, while
it becomes more arduous defining such a quantity for a laminate
since it depends upon the geometrical parameters of the stack (lay-
ers orientations and positions) [1].

Higher order theories allow for overcoming such a difficulty:
they give a better description of both the laminate kinematics
and stress field without the need of introducing any correction
coefficient. However these theories require the introduction of
higher-order stress resultants and stiffness matrices whose physi-
cal meaning is not immediate. In literature one can find several
higher-order theories of different nature: for each theory the dis-
placement field is expanded in a finite series (in terms of the thick-
ness coordinate) of unknown functions: the terms of the series (i.e.
the functions depending upon the thickness coordinate) can belong
to a given basis (polynomial, trigonometric, radial, B-spline,
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NURBS, etc.). In principle it is possible to expand the displacement
field up to any degree in terms of the thickness coordinate.
Nevertheless, an expansion up to the third order (the so-called
third-order theory) is sufficient to capture the quadratic variation
of the transverse shear strains and stresses within each layer.
There are a lot of papers on third-order theories, see for instance
[3–11]. Despite they seem to differ from each other, the displace-
ment fields of these theories are mechanically equivalent (or
related), see [12]. Recently, the classical Third-order Shear
Deformation Theory (TSDT) of laminates, initially introduced by
Reddy [3], has been extended and reformulated according to the
Eringen’s nonlocal linear elasticity theory to capture small scale
size effects through the thickness [13].

The aim of this paper does not consist in a critical analysis of all
the different types of TSDT that can be found in literature, rather it
aims to shed some light on certain aspects linked to the formula-
tion of the laminate constitutive equation in the conceptual frame-
work of the classical TSDT of Reddy [1]. Particularly, the objective
of the present work is twofold: on one hand it aims of clarifying the
physical meaning of the higher-order stiffness matrices while on
the other hand it intends of estimating their influence on the

elastic response of the laminate. To these purposes the polar
method initially introduced by Verchery [14], later enriched and
deeply investigated by Vannucci and his co-workers [15–19] and
recently extended to the FSDT of laminates [20] is here employed
(for the first time) within the framework of the TSDT. In particular,
the expression of the polar parameters of the laminate
higher-order stiffness matrices is analytically derived. Thanks to
the polar formalism and its application to the TSDT it is possible
to introduce some new classes of laminates and also to generalise
the definition of a quasi-homogeneous laminate, initially introduced
by Vannucci and Verchery [21]. Accordingly, it is possible to carry
out a more general analysis of the elastic response of the laminate
by reformulating and generalising the problem of designing its
elastic symmetries (initially introduced by Vannucci [22] and later
extended to the FSDT [20]) within the context of the TSDT. This
problem is formulated as an unconstrained minimisation problem
in the space of the full set of the laminate polar parameters (even
including the higher-order stiffness matrices). Due to its particular
nature (i.e. a non-convex optimisation problem in the space of the
layers orientation angles), the solution search process is performed
by using the genetic algorithm (GA) BIANCA [23–25]. Finally, in

Notations

CLT classical laminate theory
FSDT First-order Shear Deformation Theory
TSDT Third-order Shear Deformation Theory
GA genetic algorithm
C ¼ O; x1; x2; x3f g local (or material) frame of the elementary ply
CI ¼ O; x; y; z ¼ x3f g global frame of the laminate
h rotation angle
11;22;33;32;31;21f g () 1;2;3;4;5;6f g correspondence be-

tween tensor and Voigt’s (matrix) notation for the in-
dexes of tensors (local frame)

xx; yy; zz; zy; zx; yxf g () x; y; z; q; r; sf g correspondence between
tensor and Voigt’s (matrix) notation for the indexes of
tensors (global frame)

Zij; ði; j ¼ 1;2 or i; j ¼ x; yÞ second-rank plane tensor using tensor
notation (local and global frame)

Lijkl; ði; j; k; l ¼ 1;2 or i; j; k; l ¼ x; yÞ fourth-rank plane tensor
using tensor notation (local and global frame)

u; v;w components of the laminate displacement field within
the global frame CI

u0; v0;w0;/x;/y the five independent kinematic unknowns in
the context of the Reddy’s TSDT

n number of layers
dkf g ðk ¼ 1; . . . ;nÞ vector of the layers orientation angles

zk�1; zk thickness coordinates of bottom and top faces of the kth
constitutive ply, respectively

h overall thickness of the laminate
eð0Þ
� �

; eð1Þ
� �

; eð3Þ
� �

;3� 1 vectors of in-plane strains of the lami-
nate middle plane

cð0Þ
� �

; cð2Þ
� �

;2� 1 vectors of the transverse shear strains of the
laminate middle plane

Nf g; Mf g; Pf g;3� 1 vectors of higher-order generalised in-plane
forces (per unit length)

Qf g; Rf g;2� 1 vectors of higher-order generalised transverse
shear forces (per unit length)

½Q �;3� 3 in-plane reduced stiffness matrix of the constitutive
lamina

½ bQ �;2� 2 out-of-plane reduced stiffness matrix of the constitu-
tive lamina

T0; T1;R0;R1;U0;U1 polar parameters of a fourth-rank plane ten-
sor (also used for the lamina in-plane reduced stiffness
matrix ½Q �)

T;R;U polar parameters of a second-rank plane tensor (also
used for the lamina transverse shear reduced stiffness
matrix ½ bQ �)

½A�; ½B�; ½D�; ½E�; ½F�; ½H�;3� 3 in-plane stiffness matrices of the lam-
inate (membrane, membrane/bending coupling, bend-
ing and higher-order stiffness, respectively)

½A��; ½B��; ½D��; ½E��; ½F��; ½H��;3� 3 homogenised in-plane stiffness
matrices of the laminate (membrane, membrane/bending
coupling, bending and higher-order stiffness, respectively)

½bA�; ½bD�; ½bF�;2� 2 transverse shear stiffness matrices of the lami-
nate (basic and higher-order stiffness, respectively)

½bA��; ½bD��; ½bF��;2� 2 homogenised transverse shear stiffness
matrices of the laminate (basic and higher-order stiff-
ness, respectively)

bk;dk; ek; f k;hk coefficients of the laminate stiffness matrices
T0M� ; T1M� ;R0M� ;R1M� ;U0M� ;U1M� polar parameters of the generic

homogenised in-plane stiffness matrix of the laminate
ðM� ¼ A�;B�;D�; E�; F�;H�Þ

T bM�
;RbM�

;UbM�
polar parameters of the generic homogenised

transverse shear stiffness matrix of the laminate
ð bM� ¼ bA�; bD�; bF �Þ

½C�1�; ½C
�
2�; ½C

�
3�;3� 3 laminate homogeneity matrices

Ei; ði ¼ 1;2;3Þ Young’s moduli of the constitutive lamina (mate-
rial frame)

Gij; ði; j ¼ 1;2;3Þ shear moduli of the constitutive lamina (mate-
rial frame)

mij; ði; j ¼ 1;2;3Þ Poisson’s ratios of the constitutive lamina
(material frame)

tply thickness of the constitutive lamina
W overall objective function for the problem of designing

the elastic symmetries of the laminate
ff g;37� 1 vector of partial objective functions
W½ �;37� 37 positive semi-definite diagonal weight matrixcR0 M� ;cR1 M� ; cU0 M� ; cU1 M� imposed values for the polar parameters

of matrix ½M��; ðM� ¼ A�;D�; F�;H�Þ
Npop number of populations
Nind number of individuals
Ngen number of generations
pcross crossover probability
pmut mutation probability
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