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a b s t r a c t

Based on three-dimensional elasticity theory, semi-analytical solutions for free vibration of arbitrary lay-
ered magneto-electro-elastic beams are derived applying the state space approach (SSA) and discrete sin-
gular convolution (DSC) algorithm. The thickness direction of beams is chosen as the transfer direction in
SSA, and the DSC is employed to discretize the length direction. Hence, the original partial differential
equations are transformed into a state equation consisting of first-order ordinary differential equations.
The application of DSC can implement various boundary conditions, which cannot be solved in the con-
ventional SSA. Numerical examples are presented to study the method in details.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to increasing applications of piezoelectric and piezomag-
netic materials in smart structures, the problems associated with
magneto-electro-elastic materials have attracted considerable
attention recently [1–5]. There exhibit a coupling effect between
electric and magnetic fields in these materials, which can be
applied in smart structures. Applying these materials energy can
be converted from one form to another, for example magnetic,
electric and mechanical energy. Much research has been done on
mechanical behavior of magneto-electro-elastic materials.

Pan [6] derived an exact three-dimensional solution of simply
supported multilayered magneto-electro-elastic plate. Wang [7]
applied the state space formulations [8,9] to study the bending of
multi-layered magneto-electro-elastic rectangular plates. Chen
and Lee [10] presented novel state space formulations for the static
problem of transversely isotropic thermo-magneto-electro-elastic
materials using a separation technique. Pan and Heyliger [11]
found that some natural frequencies of a multi-field plate were
identical to the ones of the corresponding elastic plate. Nonlinear
free vibration of magneto-electro-elastic rectangular plates is stud-
ied by Razavi [12]. Wang [13] presented state vector approach of
free-vibration analysis of magneto-electric-elastic hybrid laminat-
ed plates.

The state space approach was introduced into elasticity by
Bahar [14] and showed high accuracy for laminated structures.
Chen [15] applied the state-space-based differential quadrature

(SS-DQM) to analyze angel-ply laminated beams. The SS-DQM
was also used to study vibration of laminated plates [16] and cylin-
drical panels [17]. Annigeri [18] presented free vibration behavior
of multiphase and layered magneto-electro-elastic beam. Li [19]
studied free vibration of a functionally graded piezoelectric beam
by state-space based differential quadrature.

Discrete singular convolution (DSC) algorithm was introduced
by Wei [20] in 1999. As Wei’s statement, singular convolutions
are a special class of mathematical transformations which appear
in many science and engineering problems, such as Hilbert, Abel
and Radon transforms. It is the most convenient way to discuss
the singular convolution in the context of the theory of distribu-
tions. It not only provides a rigorous justification for a number of
informal manipulations in physical science and engineering, but
also opens a new area of mathematics [21]. The theory of wavelets
and frames can also be explained in the theory of distributions
[22].

Wang [23] studied simply supported anisotropic rectangular
plate by DSC method. Nonlinear static response of laminated com-
posite plates is analyzed by using DSC method [24]. Ö Civalek [25]
studied vibration of isotropic conical shells applying DSC. Vibration
analysis of conical panels was presented by Ö Civalek [26] using
DSC method. A four-node DSC for geometric transformation was
applied to investigate vibration of arbitrary straight-sided quadri-
lateral plates [27].

Zhao et al. [28,29] analyzed the high frequency vibrations of
plates and plate vibration under irregular internal support using
DSC algorithm. Wan et al. [30] studied the unsteady incompress-
ible flows using DSC. Ng et al. [31] presented a comparative
accuracy of DCS and generalized differential quadrature methods
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for vibration analysis of rectangular plates. Yunshan [32] applied
the DSC-Ritz method to study the free vibration of Mindlin plates.
Lim et al. [33] proposed the DSC-Ritz method for high-mode fre-
quency analysis of thick shallow shells. It is showed that the DSC
algorithm works very well for the vibration analysis of plates, espe-
cially for high-frequency analysis. It is also concluded that the DSC
algorithm had global methods’ accuracy and local methods’ flex-
ibility for solving differential equations.

Giunta et al. [34] analyzed mechanical behavior of beams sub-
jected to thermal loads via collocation with radical basis functions.
The advantage is that it is easy to implement and provides higher
order smoothness of solution, but the choice of RBFs’ shape para-
meter affects accuracy greatly. Civalek [35] applied differential
quadrature and harmonic differential quadrature to analyze buck-
ling of thin isotropic plates and elastic columns. The various
boundary conditions can be easily incorporated in differential
quadrature and harmonic differential quadrature. Results obtained
with HDQ method are more accurate than finite elements and
finite differences and a coarser grid is used. Zhao et al. [36] pre-
sented DSC analysis of free-edged beams by iteratively matched
boundary method. DSC algorithm had global methods’ accuracy
and presented good performance for high frequency analysis. How-
ever, it is difficult to incorporate some boundary conditions in DSC
approach. The present method is not suitable for non-rectangular
plates through geometric transformation because boundary condi-
tions can not be easily incorporated in SS-DSC for non-rectangular
plates.

In this paper, the hybrid semi-analytical elasticity method (SS-
DSC) is introduced to the analysis of layered magneto-electro-elas-
tic beams. The method can be applied to analyze arbitrary layered
magneto-electro-elastic beams. The thickness direction of the
laminates is treated as the transfer domain in the SSA, while the
length direction is discretized by the DSC algorithm. Vibrations
with various boundary condition can be studied by DSC algorithm.
By applying the conventional transfer matrix method, a transfer
relation between the state vectors on the lateral surfaces are estab-
lished. Numerical examples are performed to validate the present
method, and the accuracy and efficiency of this method is proved.

2. Basic equations

For a transversely isotropic magneto-electro-elastic medium in
Cartesian coordinate system, the coupled constitutive equations
can be written as [6]

rj ¼ CjkSk � ekjEk � qkjHk;

Dj ¼ ejkSk þ ejkEk þmjkHk;

Bj ¼ qjkSk þmjkEk þ ljkHk;

ð1Þ

where rj denotes stress, Dj is electric displacement and Bj is mag-
netic induction. Cjk; ejk and ljk are the elastic, dielectric and magnet-
ic permeability coefficient. ejk; qjk and mjk are piezoelectric,
piezomagnetic and magnetoelectric material coefficients.

In case of plane-stress state for a beam, the constitutive equa-
tions can be approximated to two-dimensional form as

rx ¼ �C11Sxx þ �C13Szz � �e31Ez � �q31Hz;

rz ¼ �C13Sxx þ �C33Szz � �e33Ez � �q33Hz;

rzx ¼ �C55Sxz � �e15Ex � �q15Hx;

Dx ¼ �e15Sxz þ �e11Ex þ �m11Hx;

Dz ¼ �e31Sxx þ �e33Szz þ �e33Ez þ �m33Hz;

Bx ¼ �q15Sxz þ �m11Ex þ �l11Hx;

Bz ¼ �q31Sxx þ �q33Szz þ �m33Ez þ �l33Hz;

ð2Þ

in which
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The strain displacement relations are

Sxx ¼
@u
@x
; Szz ¼

@w
@z

; Sxz ¼
@u
@z
þ @w
@x

; ð4Þ

where u and w are mechanical displacement in coordinate direc-
tions x and z.

The electric field vector can be expressed by the electric poten-
tial as follows:

Ex ¼ �
@u
@x

; Ez ¼ �
@u
@z

: ð5Þ

The magnetic field vector can be expressed by the magnetic poten-
tial as follows:

Hx ¼ �
@w
@x

; Hz ¼ �
@w
@z

: ð6Þ

3. State vector formulation

The state vector approach is based on the mixed formulation
of solid mechanics in which u;w;rz;Dz;Bz; szx;/ and w are taken
as basic unknowns. Following the process of state vector
approach in elasticity and eliminating from the governing Eqs.
(1)–(6), the field equations can be written in the following matrix
form:

@g1

@z
¼ Ag1;g2 ¼ Bg1; ð7Þ

where g1 is the basic unknown vector, which is called the state vec-
tor. g2 is related to g1 by Eq. (7).

g1¼ ½u Dz Bz rz szx / w w�Tg2¼ ½rx Dx Bx�T ; ð8Þ
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