
Post-buckling behavior of imperfect laminated composite plates
with rotationally-restrained edges

Qingyuan Chen a, Pizhong Qiao a,b,⇑
a State Key Laboratory of Ocean Engineering and School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
b Department of Civil and Environmental Engineering, Washington State University, Sloan Hall 117, Pullman, WA 99164-2910, USA

a r t i c l e i n f o

Article history:
Available online 7 February 2015

Keywords:
Nonlinear static analysis
Post-buckling
Rotationally-restrained laminates
Galerkin method
In-plane shear loading
Combined in-plane loading

a b s t r a c t

The nonlinear governing equations of rotationally-restrained laminated composite plates with imperfec-
tion are presented by the Galerkin method, and they are solved by employing the Newton–Raphson
method for the post-buckling analysis. The considered laminates are symmetric, and they are loaded
in pure in-plane shear or combined in-plane shear and compression. The deformation shape function
of the restrained plates is obtained through a linear combination of vibration eigenfunctions of simply
supported and clamped beams along either the longitudinal or transverse direction of plates. The validity
study shows that the presented method is effective for performing the nonlinear analysis of laminates
with all four edges elastically-restrained against rotation. A parametric study is conducted to evaluate
the effect of rotational spring stiffness, material properties, and fiber orientation under pure in-plane
shear as well as the loading ratio under combined shear and compression on the nonlinear static and
post-buckling behavior of rotationally-restrained laminates. The proposed solution for nonlinear static
analysis of rotationally-restrained composite plates with imperfection is accurate and effective, as
demonstrated by the comparisons with the predictions by the finite element analysis, and combined with
the discrete plate analysis technique, it can be potentially applied to post-buckling analysis of FRP struc-
tural shapes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The simply supported and clamped boundary conditions are
two extreme and ideal cases, and the boundary edges are usually
elastically restrained by the adjacent structures in reality. Some
researchers have studied the elastic large deflection or post-buck-
ling behavior of isotropic and laminated plates with the edges elas-
tically restrained and under compression by the analytical method
[1,2], semi-analytical method [3–5], and numerical method [6,7].

Shear post-buckling of composite laminates has attracted less
attention than that of laminates under compression, and most of
the existing studies were about the laminates with the simply sup-
ported or clamped boundary edges, such as the studies by using
the analytical method [8], semi-analytical method [9–14], and
numerical method [15,16]. Concerning the laminated plates with
elastically-restrained edges subjected to shear loading, Quatmann
and Reimerdes [17] presented an analytical method for post-buck-
ling behavior of composite fuselage structures under combined

compression and shear loading, in which the torsional restraints
along the long edges of the plates were considered to simulate
the influence of different types of stringers on the post-buckling
behavior. Beerhorst et al. [18] also investigated the post-buckling
behavior of an infinitely long symmetric and balanced laminate
with the longitudinal edges elastically restrained by the torsional
springs and under in-plane compression and shear using the ana-
lytical method. The above two studies researched the long lami-
nates under shear loading, but the behavior of relatively short
laminates under shear loading was not considered. Chia [19] devel-
oped a semi-analytical solution for post-buckling analysis of an
unsymmetrically-laminated angle-ply rectangular plate under in-
plane compression and edge shear. In Chia [19]’s study, the oppo-
site edges of the laminates were assumed to be elastically
restrained against rotation to the same degree, and the study only
presented the numerical results for post-buckling of the square
plates under uniaxial and biaxial compression.

In this paper, a nonlinear static solution for the relative short
imperfect symmetric laminates with four edges rotationally-re-
strained and subjected to the combined shear and compression
(as shown in Fig. 1) is presented. The nonlinear governing
equations are derived using the Galerkin method, and the
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Newton–Raphson method is then used to solve nonlinear problem.
This method is based on the semi-analytical method proposed by
Zhang and Matthews [9,10], Kosteletos [11] and Romeo and Frulla
[12] for the non-linear analysis of symmetrically laminated plates
with simply-supported or clamped boundary conditions. In the
present analysis, the eigenfunctions of simply-supported and
clamped beams are linearly combined (or uniquely weighed) to
satisfy the rotationally-restrained boundary conditions. The
numerical results for relatively short laminates with various rota-
tional spring stiffness under in-plane shear loading are presented
and compared with those from the numerical finite element analy-
sis. Then, a parametric study is conducted to examine the effect of
a wide range of parameters on the nonlinear static and post-buck-
ling behavior of rotationally-restrained plates under shear or com-
bined shear and compressive loading.

2. Theoretical formulations

2.1. Governing equation

The laminated composite plate and coordinate system are
shown in Fig. 1, and the length and width of the plate are a and
b, respectively. The laminated plate is subjected to the in-plane
shear Nxy and bi-axial compression Nxx and Nyy; in addition, the
plate is elastically restrained along all four edges with the rotation-
al spring stiffness k1 at x ¼ 0 and a, and k2 at y ¼ 0 and b, respec-
tively. The laminate considered is thin (the plate thickness h is
much smaller than the in-plane dimensions of the plate), so the
classical laminated plate theory is used. The constitutive relations
for the laminated plate are expressed as:
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where B is called the bending-extension coupling matrix, and it is a
zero matrix for the symmetric laminates as considered in this study,
and
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in which, Nxx; Nyy and Nxy are the in-plane normal and shear forces
per unit length; Mxx; Myy and Mxy are the bending and twisting
moments per unit length; e0

xx; e0
yy and e0

xy are the normal and shear
strains at the middle surface; w is the transverse deflection of every
point ðx; yÞ of the middle surface of the plate; Aij ði; j ¼ 1;2;6Þ are the
in-plane extension stiffness, and Dijði; j ¼ 1;2;6Þ are the bending
stiffness (see [20,21]).

Partially inverting Eq. (1) and considering only the symmetric
laminates lead to

e0 ¼ A�1N
M ¼ D j

ð3Þ

The equilibrium equations of a generally layered laminate with
imperfection under in-plane loading is given as [12,22]:
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and the compatibility equation of the laminate with imperfections
are reported as [12,22]:
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Introducing the Airy function /ðx; yÞ:
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By substituting Eqs. (6) and (3) into Eqs. (4) and (5), respective-
ly, the first two equilibrium equations in Eq. (4) are satisfied spon-
taneously, and the following equilibrium and compatibility
equations in the dimensionless form are obtained [9–12]:
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in which, the non-dimensional parameters are defined as
Fig. 1. Geometry of the rotationally-restrained laminates under combined in-plane
shear and compression.
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