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a b s t r a c t

The paper deals with the sampling surfaces (SaS) method proposed by the authors and its implementa-
tion for the three-dimensional (3D) coupled steady-state thermoelectroelastic analysis of laminated
piezoelectric shells subjected to thermal loading. The SaS formulation is based on choosing inside the
nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the
temperatures and displacements of these surfaces as basic shell variables. Such choice of unknowns with
the consequent use of Lagrange polynomials of degree In � 1 in the thickness direction for each layer
permits the presentation of the laminated piezoelectric shell formulation in a very compact form. The
SaS are located inside each layer at Chebyshev polynomial nodes that allows one to minimize uniformly
the error due to the Lagrange interpolation. As a result, the SaS formulation can be applied efficiently to
derivation of the analytical solutions for laminated piezoelectric shells, which asymptotically approach
the 3D exact solutions of thermoelectroelasticity as the number of SaS goes to infinity.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional (3D) analysis of laminated piezoelectric
plates and shells under thermal loading has received considerable
attention during past twenty years (see, e.g. [1,2]). There are at
least five approaches to 3D exact solutions of thermoelectroelastic-
ity for piezoelectric plates and shells, namely, the Pagano approach
[3,4], the state space approach [5], the power series expansion
approach, i.e. the Frobenius method [6], the asymptotic expansion
approach, i.e. the perturbation method [7] and the sampling sur-
faces (SaS) approach [8,9]. The first approach was implemented
for piezoelectric plates in contributions [10–14]. The most popular
state space approach was utilized efficiently in papers [15–19]. The
3D solution of thermoelectroelasticity for piezoelectric rectangular
plates using the asymptotic expansion approach was obtained by
Cheng and Batra [20]. The use of the SaS approach for the 3D cou-
pled thermoelectroelastic analysis of laminated piezoelectric
plates was carried out by the authors [21]. The exact transient
thermal stress analysis of laminated strips made of piezoelectric
and magnetostrictive materials was fulfilled by Ootao and his
coauthors [22,23].

In the shell formulation, the coefficients of the system of differ-
ential equations depend on the thickness coordinate. This implies
that the Pagano approach and the state space approach cannot
be applied to 3D exact solutions for shells directly. For solving such

problem the Frobenius method [24–29] can be employed. It is also
possible to artificially divide the shell into a large number of
individual layers with the constant coefficients through their
thicknesses (see, e.g. [30–32]) following a technique proposed by
Soldatos and Hadjigeorgiou [33]. However, the solutions derived
via such a technique are not exact, they are approximate. After a
close survey of the 3D coupled thermopiezoelectric structure anal-
ysis in the open literature, we found that the SaS method had not
been applied yet to laminated piezoelectric shells. The present
paper is intended to fill the gap of knowledge in this research area.

The SaS formulation was first utilized for the 3D elasticity anal-
ysis of laminated composite plates and shells [8,9]. Then, the SaS
formulation was extended to the heat conduction theory [34], ther-
moelasticity [35,36] and electroelasticity [37–39]. According to the
SaS concept, we choose arbitrarily located surfaces inside the nth
layer parallel to the middle surface of the shell XðnÞ1;XðnÞ2;
. . . ;XðnÞIn in order to introduce temperatures TðnÞ1; T ðnÞ2; . . . ; TðnÞIn ,
electric potentials uðnÞ1;uðnÞ2; . . . ;uðnÞIn and displacement vectors
uðnÞ1;uðnÞ2; . . . ;uðnÞIn of these surfaces as basic shell variables, where
In is the total number of SaS of the nth layer (In P 3Þ. Such choice of
temperatures, electric potentials and displacements with the
consequent use of the Lagrange polynomials of degree In � 1 in
the thickness direction for each layer allows the presentation of
governing equations of the SaS thermopiezoelectric shell formula-
tion in a very compact form.

It is worth noting that the developed shell formulation with
equally spaced SaS does not work properly with the Lagrange poly-
nomials of high degree because of the Runge’s phenomenon [40],
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which can lead to oscillations at the edges of the interval when the
user deals with the specific shell metric functions. If the number of
equally spaced nodes is increased then the oscillations become
even larger. However, the use of Chebyshev polynomial nodes
[41] as SaS coordinates allows one to minimize uniformly the error
due to the Lagrange interpolation. As a result, the SaS formulation
can be applied efficiently to the solution of 3D coupled problems
for laminated thermopiezoelectric shells with a specified accuracy
utilizing the sufficient number of SaS. This is due to the fact that
analytical solutions based on the SaS formulation asymptotically
approach the 3D exact solutions of thermoelectroelasticity as
In !1.

The origins of the SaS concept can be found in contributions
[42,43] in which three, four and five equally spaced SaS are
employed. The SaS formulation with the arbitrary number of equi-
spaced SaS is considered in paper [44]. The more general approach
with the SaS located at the Chebyshev polynomial nodes was
developed later [8,9].

2. Description of temperature and temperature gradient fields

Consider a thick laminated shell of the thickness h. Let the mid-
dle surface X be described by orthogonal curvilinear coordinates h1

and h2, which are referred to the lines of principal curvatures of its
surface. The coordinate h3 is oriented along the unit vector
e3ðh1; h2Þ normal to the middle surface. Introduce the following
notations: eaðh1; h2Þ are the orthonormal base vectors of the middle
surface; Aaðh1; h2Þ are the coefficients of the first fundamental
form; kaðh1; h2Þ are the principal curvatures of the middle surface;
ca ¼ 1þ kah3 are the components of the shifter tensor; cðnÞina ðh1; h2Þ
are the components of the shifter tensor at SaS defined as

cðnÞina ¼ caðhðnÞin3 Þ ¼ 1þ kah
ðnÞin
3 ; ð1Þ

where hðnÞin3 are the transverse coordinates of SaS of the nth layer
given by

hðnÞ13 ¼ h½n�1�
3 ; hðnÞIn

3 ¼ h½n�3 ;

hðnÞmn
3 ¼ 1

2
h½n�1�

3 þ h½n�3

� �
� 1

2
hðnÞ cos p 2mn � 3

2ðIn � 2Þ

� �
; ð2Þ

where h½n�1�
3 and h½n�3 are the transverse coordinates of layer inter-

faces X½n�1� and X½n� depicted in Fig. 1; hðnÞ ¼ h½n�3 � h½n�1�
3 is the thick-

ness of the nth layer.
Here and in the following developments, the index n identifies

the belonging of any quantity to the nth layer and runs from 1 to
N, where N is the number of layers; the index mn identifies the

belonging of any quantity to the inner SaS of the nth layer and runs
from 2 to In � 1, whereas the indices in; jn; kn describe all SaS of the
nth layer and run from 1 to In; Latin tensorial indices i; j; k; l range
from 1 to 3; Greek indices a; b range from 1 to 2.

Remark 1. It is seen from Eq. (2) that the transverse coordinates of
inner SaS hðnÞmn

3 coincide with coordinates of the Chebyshev
polynomial nodes [41]. This fact has a great meaning for a
convergence of the SaS method [8,9].

The relation between the temperature T and the temperature
gradient C is given by

C ¼ rT: ð3Þ

In a component form, it can be written as

Ca ¼
1

Aaca
T ;a; C3 ¼ T ;3; ð4Þ

where the symbol . . .ð Þ;i stands for the partial derivatives with
respect to coordinates hi.

We start now with the first and second assumptions of the pro-
posed thermopiezoelectric laminated shell formulation. Let us
assume that the temperature and temperature gradient fields are
distributed through the thickness of the nth layer as follows:

TðnÞ ¼
X

in

LðnÞin T ðnÞin ; h½n�1�
3 6 h3 6 h½n�3 ; ð5Þ

CðnÞi ¼
X

in

LðnÞin CðnÞini ; h½n�1�
3 6 h3 6 h½n�3 ; ð6Þ

where T ðnÞin ðh1; h2Þ are the temperatures of SaS of the nth layer
XðnÞin ; CðnÞini ðh1; h2Þ are the components of the temperature gradient
at the same SaS; LðnÞin ðh3Þ are the Lagrange polynomials of degree
In � 1 defined as

TðnÞin ¼ TðhðnÞin3 Þ; ð7Þ
CðnÞini ¼ CiðhðnÞin3 Þ; ð8Þ

LðnÞin ¼
Y

jn–in

h3 � hðnÞjn3

hðnÞin3 � hðnÞjn3

: ð9Þ

The use of Eqs. (4), (5), (6) and (8) yields

CðnÞina ¼ 1

AacðnÞina
TðnÞin;a ; ð10Þ

CðnÞin3 ¼
X

jn

MðnÞjn ðhðnÞin3 ÞTðnÞjn ; ð11Þ

where MðnÞjn ¼ LðnÞjn;3 are the derivatives of the Lagrange polynomials,
which are calculated at SaS as follows:

MðnÞjn ðhðnÞin3 Þ ¼ 1

hðnÞjn3 � hðnÞin3

Y
kn–in ;jn

hðnÞin3 � hðnÞkn
3

hðnÞjn3 � hðnÞkn
3

for jn – in;

MðnÞin ðhðnÞin3 Þ ¼ �
X
jn–in

MðnÞjn ðhðnÞin3 Þ: ð12Þ

It is seen from Eq. (11) that the values of the temperature gradient
on SaS of the nth layer CðnÞin3 are represented as a linear combination
of temperatures of SaS of the same layer TðnÞjn .

3. Variational formulation of heat conduction problem

The variational equation for the thermal laminated shell is writ-
ten as

dJ ¼ 0; ð13Þ

where J is the basic functional of the heat conduction theory given
byFig. 1. Geometry of the laminated shell.
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