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a b s t r a c t

A computational algorithm of volume average for three-dimensional unit cell model is established to pre-
dict the viscoelastic properties of composite materials consisting of linear viscoelastic matrix and trans-
versely isotropic elastic fibers. Several repeating unit cells (RUCs) are constructed with square, hexagonal
and random fiber packing to compare the predicted results of composite viscoelastic properties. Proper
periodic boundary conditions and necessary physical constraints which are used to stop rigid body
motions of the RUCs are implemented. The influences of the ways to construct the RUCs on the predicted
results of composite viscoelastic properties are discussed. Some interesting remarks are drawn from the
present study.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the superior properties over conventional engineering
materials, composite materials are widely used in conventional
and novel areas, including aerospace, civil, electronic and medical
engineering. However, many polymer composites always exhibit
viscoelastic behavior. The magnitude of the stress components is
a function of the deformation history which depends on strain,
strain rate, temperature and time [1]. It is difficult to be measured
or evaluated conveniently. Proper methodologies should be for-
warded to determine this characteristic for engineering as vis-
coelastic property is a desired property in many circumstances
[2]. Consequently, it has been an active research area for many
years to research the viscoelastic properties of the composites.

Micromechanical methods provide efficient tools to evaluate
the behavior of the composite materials. Many researchers have
devoted considerable effort to characterize macro-mechanical
properties of composites by using micromechanics modeling. In
order to obtain closed-form solutions for composite effective elas-
tic properties in terms of the constituent properties and their vol-
ume fractions, many analytical models have been developed,
including the concentric cylinder model (CCM) [3–5], the general-
ized self-consistent method (GSCM) [6–9] and the Mori–Tanaka
(M–T) method [10–12]. Based on the homogenization technique

and the average of the constituent properties, these methods have
been extensively used in the linear analysis for composite struc-
tures. However, they neglect the local stresses and strain concen-
trations within the constituent materials and usually yield an
overestimation of the composite nonlinear behavior. In order to
overcome these shortcomings and obtain a better prediction of
the composite nonlinear response, a few of semi-analytical meth-
ods have been developed. The microstructure of a composite mate-
rial is represented by a repeating unit cell, which can be
subsequently partitioned into a number of subregions [13]. The
method of cells (MOC) [14] and the generalized method of cells
(GMC) [15,16] are powerful semi-analytical methods to approxi-
mate the composite effective behavior. In the GMC, the subcell dis-
placement vector is assumed to be linearly expanded in terms of
the local subcell coordinates. In the high-fidelity-generalized
method of cells (HFGMC) proposed by Aboudi et al. [17], the sub-
cell displacement fields are expanded using second-order
approximations. It has been shown that the composite nonlinear
response and the gradients in the local fields are accurately pre-
dicted [18,19], as compared with results of finite element analysis
(FEA). These semi-analytical methods have a distinct advantage
over the analytical methods in the solution of local fields where
the spatial variations are better resolved; however, the computa-
tional time increases rapidly if more details of the nonlinear effects
in the local fields are taken into account. The exact solutions of the
local fields in the constituent materials can be obtained by fully
numerical methods such as FEA, where the micromechanics mod-
els are established with detailed fiber geometry and arrangements.
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Several works have been reported on the boundary conditions
imposed on the RUC in the FEA [20–23]. The purpose of this paper
is to research the effects of the ways to construct the RUCs on the
predicted results of composite properties.

In this work, viscoelastic properties of unidirectional fiber-rein-
forced composites consisting of linear viscoelastic matrix and
transverse isotropic elastic fibers are investigated by using three-
dimensional unit cell finite element technique. Several RUCs are
established with square, hexagonal and random fiber packing.
Proper periodic boundary conditions and necessary physical con-
straints to stop rigid body motions of the RUCs are implemented.
The influences of the ways to construct the RUCs on the predicted
results of composite viscoelastic properties are discussed. Some
interesting remarks are drawn from the present study. Although
the analysis is carried out for the linear viscoelastic materials,
the outcomes of this work can be suitable for other viscoelastic
composites.

2. Mechanical models of composite constituents

Most polymers as the matrix of composite materials exhibit vis-
coelastic behaviors. That is a combination of viscous and elastic
responses to external forces. In this work, the polymer matrix is
assumed to follow an isotropic viscoelastic behavior determined
by a given set of material parameters. These material constants
are assumed to be independent of temperature. The relaxation
modulus of the matrix is given by a Prony series expansion:

EðtÞ ¼ E1 þ ðEu � E1Þ
XN

i¼1

Wi expð�t=siÞ; ð1Þ

where, si is the stress relaxation time, E1 is the fully relaxed mod-
ulus, Eu is the unrelaxed modulus, Wi is weight factor, and t is the
reduced time.

As Poisson’s ratio tm is a constant for the relaxation process, the
shear and bulk moduli of the linear viscoelastic matrix material can
be defined by

GðtÞ ¼ EðtÞ
2ð1þ tmÞ ð2Þ

KðtÞ ¼ EðtÞ
3ð1� 2tmÞ : ð3Þ

The fibers usually behave as elastic materials in the working
temperature of polymer–matrix composites [24]. The carbon fiber
is considered as the transversely isotropic elastic material, and is
thus modeled by the generalized Hooke’s law. Parameters of resin
and fiber used in the numerical example are given in Table 1.The
stress relaxation times and weight factors of the epoxy resin are
shown in Table 2.

In the case of composite materials, stress can be expressed as a
function of strain and time given by:

r ¼ f ðe; tÞ: ð4Þ

Under small deformation assumption the linear viscoelastic
constitutive equation for predicting the relaxation of the stress in
the composite structures can be expressed by the following heredi-
tary integral:

hrijðtÞi ¼
Z t

0
Cijklðt � sÞdheklðsÞi

ds
ds; i; j; k; l ¼ 1;2;3: ð5Þ

This can be rewritten in the Voigt vector form as:

hr11ðtÞi
hr22ðtÞi
hr33ðtÞi
hr12ðtÞi
hr13ðtÞi
hr23ðtÞi

8>>>>>>>>><
>>>>>>>>>:
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¼
Z t

0

C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

C1211 C1222 C1233 C1212 C1213 C1223

C1311 C1322 C1333 C1312 C1313 C1323

C2311 C2322 C2333 C2312 C2313 C2323

2
6666666664

3
7777777775

�

dhe11ðsÞi=ds
dhe22ðsÞi=ds
dhe33ðsÞi=ds
dhe12ðsÞi=ds
dhe13ðsÞi=ds
dhe23ðsÞi=ds

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ds; ð6Þ

where, h�i represents the averaged value of the component. Cijkl(t) is
a 6 � 6 matrix of stiffness tensor coefficients for a heterogeneous
material in general. For a transversely isotropic viscoelastic material
as an example, the number of unknown independent coefficients is
five. To determine these coefficients, an inverse analysis of
micromechanics unit cell is performed. Stress analysis of the unit
cell is carried out for six independent load cases using FEA. Each
load case can get a set of six independent equations and the stiff-
ness coefficients Cijkl(t) can be solved with such load cases. For every
load case, the data obtained from the analysis is conducted further
using a volume averaging scheme at each time step to get time-
dependent averaged stresses and strains, i.e.:

hrijðtÞi ¼ 1
X

R
X rijðtÞdX ¼ 1

X

Xm

n¼1

rn
ijðtÞHn

heijðtÞi ¼ 1
X

R
X eijðtÞdX ¼ 1

X

Xm

n¼1

en
ijðtÞHn

8>>>><
>>>>:

; ð7Þ

where, X is the volume of the cell, m is the total number of ele-
ments, Hn is the volume of the nth element, rm

ij ðtÞ and en
ijðtÞ are

the stress and strain of that element, respectively.

3. Micromechanical models

In a real unidirectional fiber reinforced composite, the fibers are
arranged randomly. Usually, the actual cross-section of the

Table 1
Material properties of fiber and resin for the numerical example [30].

Property Carbon fiber Property Epoxy resin

E f
1 (GPa) 207 Eu (GPa) 3.2

E f
2 (GPa) 20.7 E1 (GPa) 0.031

t f
12

0.2 tm 0.35

t f
23

0.3

G f
12 (GPa) 27.6

G f
23 (GPa) 7.96

Vf 0.6

Table 2
Relaxation times and weight factors of epoxy
resin [30] (T = 30 �C).

i Wi si (min)

1 0.059 29.2
2 0.066 2.92e3
3 0.083 1.82e5
4 0.112 1.1e7
5 0.154 2.83e8
6 0.262 7.94e9
7 0.184 1.95e11
8 0.049 3.32e12
9 0.025 4.92e14
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