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a b s t r a c t

A new formulation of the scaled boundary finite element method (SBFEM) is presented for the static anal-
ysis of composites in the framework of classical laminated plate theory. In the SBFEM, the domain is
described by the mapping of its boundary with respect to a scaling centre. Therefore, only the boundary
needs to be discretised. A local coordinate system is introduced, where a scaling coordinate measures the
distance from the scaling centre to the boundary and the other coordinate describes the circumferential
direction along the boundary. The displacements are approximated as products of displacement shape
functions and unknown functions of the scaling coordinate. Via the virtual work principle, a system of
ordinary differential equations for the determination of the unknown displacement functions is obtained,
which can be solved in a closed-form analytical manner. Element stiffness matrices for bounded and
unbounded domains can be computed, using appropriate subsets of the solution. In the case of cracked
composites, the SBFEM enables the effective and precise calculation of singularity orders of stresses, if the
scaling centre is selected at the crack tip. Numerical examples show the accuracy and efficiency of the
scaled boundary finite element method applied to laminated plate bending problems.
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1. Introduction

The scaled boundary finite element method (SBFEM) is a semi-
analytical analysis technique, which combines advantages of the
finite element method (FEM) and the boundary element method
(BEM). In contrast to the boundary element method, no fundamen-
tal solution is needed. The beginnings of the SBFEM are in soil
mechanics. In 1982, Dasgupta [1] presented a finite element

formulation for the computation of unbounded homogeneous
media, which he called cloning algorithm. This method was
enhanced by Wolf and Song for the computation of the dynamic
stiffnesses of unbounded media [2–4]. The first papers, dealing
with the SBFEM, are dedicated to problems of soil mechanics. An
overview about the diverse works of Song and Wolf is given in
[2]. The mechanical behaviour of a basement to its surrounding soil
is investigated by Deeks and Wolf [5]. Doherty and Deeks present
an axis-symmetric formulation of the method, where a basement is
described and the stiffness of the underlying ground increases with
the depth [6,7]. But the SBFEM is not restricted to soil mechanics.
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Deeks and Wolf [8] present a formulation of the method via the
virtual work principle, which is aligned to the traditional virtual
work derivation of the standard finite element method.

Essential to the SBFEM is, that only the boundary is discretised
in a finite element manner. The interesting domain is described by
the mapping of its boundary with respect to a scaling centre. This is
achieved, introducing the so-called scaled boundary coordinates. A
scaling coordinate n runs from the scaling centre to the boundary,
whereas the boundary coordinate g describes the circumferential
direction along the boundary. The displacements are approximated
as products of displacement shape functions and unknown func-
tions of the scaling coordinate n. Via the virtual work principle, a
system of ordinary differential equations for the calculation of
the unknown functions is obtained, which can be solved in a
closed-form analytical manner. The displacements are expanded
in form of a power series. This enables the robust calculation of
intensities and exponents of singular fields without any additional
effort, if the scaling centre is put in the crack tip, making the SBFEM
especially useful for the analysis of cracked and notched structures.
The evaluation of stress singularities is not a new topic, a detailed
overview is given by Sinclair [9,10]. The benefit of the SBFEM is,
that the method combines the versatility and applicability of the
FEM with the accuracy of analytical methods. So a wide range of
applications, where stress singularities occur, can be analysed with
the SBFEM.

One of the first works within the SBFEM dealing with stress sin-
gularities in an orthotropic plate under shear is a publication of
Song [11]. In another work, Song evaluates power law singularities
at cracks and multi-material corners [12]. Mittelstedt and Becker
investigate the stress singularities at the free edges of composite
laminates using the SBFEM [13,14]. This work is continued by
Lindemann and Becker [15,16] and later by Artel and Becker [17].
Müller et al. use the SBFEM for the prediction of the direction of
an emanating crack [18]. Song and Vrcelj apply the SBFEM for
the calculation of dynamic stress intensity factors [19]. Yang cou-
ples the SBFEM with the FEM for simulating cohesive crack growth
[20,21]. Mayland and Becker [22] and Li et al. [23] present a formu-
lation of the SBFEM for the analysis of stress singularities in piezo-
electric multi-material systems. Finally, Li et al. [24] investigate the
influence of various electric boundary conditions and different
crack media on the stress intensity factors in piezoelectric bimate-
rial interfaces.

Besides this, different works dealing with the SBFEM are dedi-
cated to the improvement of the convergence behaviour of the
SBFEM. Song introduces matrix-functions for solving the ODE-sys-
tem [25] and Li et al. use the Schur decomposition for the evalua-
tion of the eigenvalues [26]. Even though the SBFEM has been
applied to many problems of continuum mechanics with great suc-
cess, the application of the SBFEM to plate bending problems is
rather unexploited. In 2011, Dieringer et al. [27] published a new
formulation of the SBFEM for plate bending problems in the frame-
work of Kirchhoff’s plate bending theory. Man et al. [28,29] pre-
sented a unified three-dimensional technique, which allows the
analysis of plate bending problems with the SBFEM. But in differ-
ence to [27] no kinematic assumptions of Kirchhoff’s plate theory
are enforced.

The present study provides the employment of the SBFEM to
problems within the framework of classical laminated plate theory.
The first part of the paper is dedicated to the derivation of the
scaled boundary finite element equations in displacements for
composites. In the second part, stress singularities in a notched
composite are examined. The first work dealing with the evalua-
tion of singularities in Kirchhoff plates was published by Williams
in 1951 [30]. Williams developed the Eigenfunction method for
the evaluation of stress singularities in Kirchhoff plates [30,31].
The method was enhanced by Sinclair for the determination of

logarithmic stress singularities [32]. Sih and Rice investigate singu-
larities at bimaterial interfaces in Kirchhoff plates [33]. Labossiere
and Huang [34] deal with the examination of singularities in
notched plates using Reissner’s kinematics. They compare Kirch-
hoff and Reissner kinematics. Rössle and Sändig present the singu-
larities in notched plates as a function of the notch opening angle
using Reissner’s plate bending theory for a wide variety of different
boundary conditions on the crack faces [35].

As mentioned before, the SBFEM is a semi-analytical analysis
technique. The formulation of the SBFEM in the present work is
similar to the Kantorovich method. In contrast to the extended
Kantorovich method, where a solution is assumed as a sum of
products of functions in one direction and functions in the other
direction, which are both a priori unknown, only the functions of
the scaling coordinate are unknown in the SBFEM and have to be
identified. Similar to the SBFEM, the extended Kantorovich method
after reduction leads to a system of ordinary differential equations
in one direction. Using the Kantorovich method, this system is
solved in one direction and then the solutions are used as assumed
functions to solve the problem in the other direction. This proce-
dure is repeated iteratively until convergence is completed. A lot
of researchers use the extended Kantorovich method for example
for analysing the free-edge strength of composite laminates [36],
the bending of thick laminated plates [37] and the large deflection
of laminated rectangular plates under general out-of-plane loading
[38]. Shufrin et al. investigated the buckling of symmetrically lam-
inated plates using the Kantorovich method, they discussed the
convergence behaviour and pointed out that the solution is inde-
pendent of the initial selected functions, even if a selected function
does not satisfy the boundary conditions [39]. Other numerical
methods for analysing composites are the finite strip method
[40] and the finite element method [41,42]. Beside these methods,
there are different meshless methods for the analysis of plates.
Krysl and Belytschko [43] were the first, who applied the ele-
ment-free Galerkin method to the static analysis of thin plates.
An overview about the development of element-free or meshless
methods and their applications for the analysis of composite struc-
tures is given by Liew et al. [44].

The enhancement of the SBFEM in the present work enables the
evaluation of stress singularities as a function of the notch opening
angle for a wide variety of composites. The influences of boundary
conditions at the crack faces on the singularities are also investi-
gated, power logarithmic stress singularites are detected in a
proper way and are also presented. Couplings between in-plane
and out-of-plane behaviour of the composites as well as their influ-
ence on the stress singularities are also rendered. Numerical exam-
ples demonstrate the accuracy and efficiency of the method’s
application to arbitrarily laminated plates.

2. Virtual work balance

If sufficiently thin laminated plates are examined, shear defor-
mations can be neglected and the kinematical assumptions of Kir-
chhoff hold. The virtual work balance for a composite laminate of
domain X and boundary C can be expressed by the following rela-
tion, if hygrothermal and body loads are not taken into account:

Z
X

Ldu0ð ÞT DALu0� Ldu0ð ÞT DBL$w� L$wð ÞT DBLu0þ L$wð ÞT DDL$w
h i

dX

¼
Z

C
dunNnþdutNt�dw;nMn�dw;tMntþdwSn

h i
dC:

The in-plane displacements are denoted by u, whereas the out-of-
plane displacement is given by w. The differential operator L relates
the strains and the displacements. The quantities Di represent
material matrices. The symbols with overbars denote stress
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