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Marcin Kamiński a,b,⇑, Bernd Lauke b

a Chair of Structural Reliability, Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Technical University of Łódź,
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a b s t r a c t

The main issue of this paper is to present statistical computational procedure for a determination of the
effective elastic parameters for polymers filled with rubber particles. The homogenized elasticity tensor
components are derived both as the variational upper and lower bounds as well as the solution for the
cell problem on the composite Representative Volume Element. Probabilistic simulation is provided using
both Monte-Carlo simulation technique and the generalized stochastic perturbation technique imple-
mented in the symbolic computer algebra system MAPLE and, separately, together with the FEM-oriented
code MCCEFF. Finally, up to fourth order probabilistic moments and coefficients of the homogenized ten-
sor for the elastomers are computed as functions of the polymer’s and particles’ Young’s moduli coeffi-
cients of variation. This study gives the basis for further homogenization-based experiments, where
the hyperelastic constitutive model will replace the classical Hookean one applied here.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An uncertainty of material, physical and even geometrical
parameters [1,2] in polymers and especially elastomers [3,4] is
intuitively natural. A random dispersion of the particles, unstable
thermal manufacturing processes, reinforcing and filling particles
distribution as well as agglomeration and polimerization processes
make the standard deviations of material characteristics really very
important. The second crucial problem in a computational
mechanics of these continua is a number of physically different
scales – from atomic and molecular through micro and meso up
to sometimes the very sophisticated macro-scale, where the elas-
tomer-based structures may have very complex shapes – also in
various geometrical scales like the automobile tires, for instance.
This complexity of both material and geometrical multiscale char-
acter undoubtedly leads to the usage of some simplifications like
the homogenization method, which appeared yet to be very effi-
cient in modeling of various composites, including the metal
matrix composites (MMC) at least [5,6]; considering above, we

would recommend its probabilistic version. Because the prelimin-
ary character of this study is related to elastomers, we engage
mainly the crude version of the Monte-Carlo simulation method
[2,7] providing up to the first fourth order statistics of the homog-
enized elasticity tensor, which on further stage of these studies will
be replaced with some linear viscoelastic homogenization model.
The new problem with elastomers, in the context of the homogeni-
zation method availability and application, is the fact that the
Young’s moduli of the filler particles is a few times smaller than
that of the matrix, while usually this interrelation between the
reinforcing particles or short/long fibers [8] and the matrices was
quite inverse. It is quite natural to apply the Finite Element Method
(FEM) to model the complexity and various scales in composite
materials. However, spatial modeling of the Representative Vol-
ume Element (RVE) may include single particle/fiber with the sur-
rounding matrix by the classical 2D or 3D finite elements and, on
the other hand, Voronoi tessellations and the corresponding irreg-
ular finite elements to mesh the specimen with many particles/
fibers as well [9]. Usually, after solving the FEM cell problem, this
solution is contrasted next with the well known analytical approx-
imations as well as the upper bounds on the effective tensor [10].
An interesting mathematical aspect here is the fact that the Pois-
son’s ratio in case of the rubber particles analyzed here equal to
about 0.49. It reaches almost its physical limit and that is why
Young’s moduli of both composite phases are randomized by only.
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(B. Lauke).

Composite Structures 123 (2015) 374–382

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.12.063&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.12.063
mailto:Marcin.Kaminski@p.lodz.pl
mailto:laukeb@ipfdd.de
http://dx.doi.org/10.1016/j.compstruct.2014.12.063
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


A significant time consumption in the Monte-Carlo analysis sug-
gests an application of another numerical technique, which is in
our case the generalized stochastic perturbation technique [2,11]
(one may propose alternatively a multiscale spectral stochastic
method [12]). Contrary to its previous applications, now the full
tenth order and multiparametric version was introduced to check
its efficiency at different random dispersion levels for the Gaussian
variables. The numerical results obtained confirm that the effective
elasticity tensor have Gaussian distribution also for the elastomers
and that the multiparametric generalized stochastic perturbation
technique returns the homogenized tensor’s moments quite close
to their estimation-based counterparts.

It needs to be outlined that the analysis presented below is the
next introductory step, after the work published in [13], to develop
full probabilistic homogenized stress–strain relationship for the
polymers filled with rubber particles. It was just demonstrated that
various theories concerning effective shear modulus for both linear
elastic and inelastic ranges may be successfully randomized using
analytical, simulation and perturbation-based computational tools,
and now we provide analogous studies for the elasticity tensor.
According to numerous experimental validations, such a non-lin-
ear homogenized constitutive law should account for the Mullins’
effect [14], however it cannot be reliably implemented without a
full prior knowledge about up to the fourth central probabilistic
moments of the homogenized constitutive law in linear elasticity.
The second, pure computational issue, is a choice of a probabilistic
numerical technique to accomplish this goal, because the Monte-
Carlo simulation approach, even if treated as almost exact estima-
tion of the results, may be enormously time consuming one for the
viscoelastic multiscale problems. Finally, having implemented
probabilistic effective constitutive law in the nonlinear range one
does not need any further multiscale FEM modeling to perform
the reliability analysis for the elastomers, where a limit function
based on maximum stresses or admissible deformations may be
the basis for the reliability index computations. Alternatively, one
could provide the durability studies (quite analogous to these pro-
posed in [13]), where stochastic fluctuations in the system param-
eters may lead to a determination of the structural element
lifetime statistical parameters.

2. Homogenization method

Let us introduce a geometrical scaling parameter f > 0 between
the micro- and macroscale of the composite and introduce two
coordinate systems y ¼ ðy1; y2; y3Þ on the microscale of the com-
posite and x ¼ ðx1; x2; x3Þ on the macroscale (see Fig. 1 below). Tra-
ditionally, we introduce Y as the volume of the entire composite,
while X stands for its Representative Volume Element (RVE)
shown in the graph below. We consider the two-component

composite material with perfectly linear elastic and isotropic
constituents that exhibit perfect contact in the microscale. An
uncertainty would be considered in material characteristics of
our composite, therefore the existence of the RVE has the same
aspects as in prior deterministic models.

Let us denote the filler region by O1, the matrix area by O2 and
the interface between them as C12. Next, let us express any state
function G defined on Y as

GfðxÞ ¼ G
x
f

� �
¼ GðyÞ: ð1Þ

The linear elasticity problem for the periodic composite struc-
ture is given as follows:
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Assuming perfect interfaces between the matrix and the parti-
cles as well as no cracks and other defects into those constituents
we solve this problem by introducing the bilinear form afðu;vÞ
[15,16]

afðu;vÞ ¼
Z

Y
Cijkl

x
f

� �
eijðuÞeklðvÞdY; ð3Þ

and the linear one

LðvÞ ¼
Z

Y
Fiv idY þ
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piv idð@YÞ; ð4Þ

in the following Hilbert space of admissible displacements defined
on Y

V ¼ vjv 2 ðH1ðYÞÞ3;vj@Yu
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; ð5Þ

kvk2 ¼
Z

Y
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Then, the variational statement equivalent to the equilibrium
problem (2) is to find uf 2 V being a solution of the following
equation:

afðuf;vÞ ¼ LðvÞ; v 2 V : ð7Þ

Let us define the additional space of the admissible displace-
ment functions PðXÞ ¼ v;v 2 ðH1ðXÞÞ3

n o
periodic on the compos-

ite cell X. So that, we introduce the new bilinear form for any
u;v 2 PðXÞ:

ayðu;vÞ ¼
Z

X
CijklðyÞeijðuÞeklðvÞdX; ð8Þ

and the homogenization function vðijÞk 2 PðXÞ (also of the displace-
ment type) as a solution for the so-called local problem on a period-
icity cell

ay vðijÞk þ yjdki

� �
nk;w

� �
¼ 0; ð9Þ

for any w 2 PðXÞ, where nk is the unit coordinate vector. The exis-
tence and uniqueness of the solution of this problem was studies
in the literature concerning the homogenization method in its ori-
ginal deterministic formulation [15]. The kinematic boundary con-
ditions consisting of zeroing of the vertical displacements on the
outer faces of the RVE preserve against the rigid body motion in this
boundary value problem. Assuming further boundedness, ellipticity
and symmetry of the fourth order elasticity tensor one may

y1

y2

y3

Fig. 1. Particle two-component composite’s spatial idealization.
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