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a b s t r a c t

The fibre paths of variable stiffness laminates are described through the fibre angles at the nodes of a
finite element (FE) representation of the structure. An algorithm is presented to optimise the fibre angles
efficiently. To reduce the number of required FE analyses a multi-level approach is used: the exact solu-
tion is first approximated in laminate stiffness space. The second level approximation is a Gauss–Newton
quadratic approximation in fibre angle space. To ensure manufacturability, a steering constraint is intro-
duced: the norm of the gradient of the fibre angle distribution is constrained. Two formulations are pro-
posed: either the average steering is constrained; or the local element-wise steering is constrained. The
resulting quadratically constrained quadratic optimisation problem is solved using an interior-point
method. It is shown that the local steering constraint performs best, at the cost of increasing the size
of the problem.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today, composite materials are frequently used in the aviation
industry and the first composite-dominated planes like the B-787
or A400M are being built. Traditionally, fibres within a layer have
the same orientation, leading to constant stiffness properties.
However, as manufacturing technology evolved, for example auto-
mated fibre placement machines, the fibre orientation of a layer
can be continuously varied leading to varying stiffness properties
that are best tailored for the applied loads. These composites are
called variable stiffness laminates (VSL).

When designing VSL, manufacturability is not always taken into
account [1]. In an early work, the structure was divided into differ-
ent segments in which the fibre angle was optimised separately.
An example of an outcome can be seen in Fig. 1(a) [2]. A similar
approach has been taken in the optimisation of flutter speed for
wings: the angle of a lot of elements is optimised, but no manufac-
turability constraint is taken into account [3]. In another approach,
the change in fibre angle between adjacent layers is taken into
account, but the set of possible angles is restricted to 0�, �45�
and 90�, so the change in fibre angle is still large [4].

To take manufacturability into account, linearly varying fibre
angles were used as can be seen in Fig. 1(b), which has given

promising, manufacturable, results [5–10]. Also for stiffened plates,
the use of linearly varying fibre angle per bay has been investigat-
ed, and again it was shown that varying the fibre angles leads to
better performance [11,12]. Direct parametrisation of the tow
paths using Lagrangian polynomials, splines or NURBS (Non-
Uniform Rational B-Splines) has been done as well. This also
showed large, manufacturable, improvements in buckling load,
but the result is dependant of the basis functions you chose to
incorporate [13–15]. Hence, the total potential of VSL is not
exploited due to the pre-specified set of possibilities.
Furthermore, most methods assume the fibres are shifted, meaning
a choice had to be made whether gaps or overlaps were allowed
during manufacturing [16].

Another approach that leads to manufacturable designs is to
align the fibres in the direction of principal stress. This was
shown to reduce stress concentrations, and could also lead to
reduced weight using the tailored fibre placement method
[17,18]. Also using the load paths, or a hybrid combination of
load paths and principal stress direction has been used to design
variable stiffness laminates [19]. Continuous tow shearing is a
new manufacturing method, leading to varying fibre angles with-
out any gaps or overlaps, but with a thickness variation that is
coupled with the change in fibre angle [20,21]. Using a genetic
algorithm, coupled with a pattern-search algorithm, or using
the infinite strip method large improvements were shown to be
possible [22,23]. A more comprehensive review can be found in
Ghiasi et al. [24].
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To exploit the possibilities of VSL fully, a three-step approach
has been developed. The first step is to find the optimal stiffness
distribution in terms of the lamination parameters. This is dis-
cussed in detail in IJsselmuiden [25,26]. The second step is to find
the optimal manufacturable fibre angle distribution, the focus of
this paper [27–29]. The third step is to retrieve the fibre paths, dis-
cussed in Blom [30]. A schematic overview of this approach is
shown in Fig. 2.

In this paper an algorithm to optimise manufacturable fibre
angle distributions is developed. The stacking sequence at each
node of a finite element model will be optimised. To ensure
manufacturability, the rate of change in fibre angle between nodes,
referred to as steering from here on, is constrained [31,32].

This paper is organised as follows: first the problem formulation
is discussed in Section 2, next the manufacturing constraints are
discussed in Section 3. The solution procedure is explained in
Section 4, followed by the results in Section 5, and finally the con-
clusion in Section 6.

2. Problem formulation

In structural optimisation, the minimisation of an objective (e.g.,
weight or compliance) subject to performance constraints (e.g., on
stresses) is studied. More generally, the worst case response (e.g.,
in the case of multiple load cases) may be minimised. Additional
constraints, often arising from manufacturing considerations, may
be imposed to guarantee certain properties of the design.

In the optimisation of variable stiffness laminates a suitably-de-
fined steering norm 1 is constrained to be less than a maximal
steering value 1U representing the upper manufacturing limit.
More details about the formulation of the steering constraint will
be given in Section 3.

Thus, the following general problem formulation is considered:

min maxð f 1; f 2; . . . ; f nÞ
s:t: f nþ1; . . . ; f m 6 0

12 � 12
U 6 0

ð1Þ

where f 1 up to f n denote structural responses that are optimised
and f nþ1 up to f m are constraints.

Structural responses, such as stiffness and strength, are calcu-
lated using finite element analyses (FEA). Since each FEA is compu-
tationally expensive, greater efficiency may be achieved by using
structural approximations, reducing the number of FEAs [33]. The

exact FE response f is first approximated in terms of the in- and
out-of-plane stiffness matrices A and D and their reciprocals:

f ð1Þ �
X

n

/m : A�1 þ /b : D�1 þ wm : Aþ wb : Dþ c ð2Þ

where the : operator represents the Frobenius inner product, mean-
ing A : B ¼ trðA � BTÞ; the reciprocal and linear approximation terms
/ and w are calculated from a sensitivity analysis [34,35], m denotes
the membrane, b the bending part and n runs over all the nodes.
This approximation is a generalisation of the linear-reciprocal ones
used in the convex linearisation method [36]. The approximations
are convex in stiffness space provided that / P 0, which is always
satisfied by construction. For many responses that enjoy homogene-
ity properties the free term c equals zero. This way of approximat-
ing structural responses works for stiffness, buckling, strength and
eigenfrequency problems.

To optimise the fibre angles, the first approximation is evaluat-
ed by considering the dependence of the stiffness matrices on the
fibre angles. As a function of fibre angles, it no longer has a simple
mathematical form and is not generally convex. Hence, a second
level approximation is made:

f ð2Þ � f ð1Þ0 þ g � Dhþ DhT �H � Dh ð3Þ

where f ð1Þ0 denotes the value, g the gradient and H is an approxima-
tion of the Hessian of the first approximation at the approximation
point. g and H can be calculated starting from

f ð2ÞðhÞ ¼ f ð1ÞðsðhÞÞ ð4Þ

where s contains the components of the stiffness matrices A and D.
Deriving this leads to

gi ¼
@f ð1Þ

@hi
¼ @f ð2Þ

@hi
¼ @f ð1Þ

@sa
� @sa

@hi
ð5Þ

Deriving again, the Hessian is found to be

Hij ¼
@2f ð1Þ

@hi@hj
¼ @2f ð1Þ

@sa@sb
� @sa

@hi
� @sb

@hj
þ @f ð1Þ

@sa
� @

2sa

@hi@hj
ð6Þ

Convexity is guaranteed by omitting the underlined part of Eq.
(6), which is not guaranteed to be positive definite, and using the
Gauss–Newton part which is positive semi-definite. An approxima-
tion has to have equal function and gradient at the approximation
point as the approximated function. Hence, using only part of the
Hessian does give a valid approximation.

(a) example of the outcome when structure

is divided in parts, taken from Hyer and

Lee [2]

(b) example of a linearly varying fibre

angle, taken from Lopes et. al. [5]

Fig. 1. 2 Outcomes of previous optimisations.
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