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a b s t r a c t

In this short communication, based on fractional calculus, we present the fractional Bingham model
which can describe the time dependent behavior in the fluid with yield strength. The pulling sphere tests
under three different speed conditions are be used to investigate the time dependence of muddy clay. The
experimental results illustrate the muddy clay is a noticeable time-dependent Bingham fluid. Experimen-
tal results show that the fractional Bingham model can well depict the mechanical behaviors of the
muddy clay, and give a good agreement with the experimental data. In addition, this study also finds that
the order of the fractional Bingham model is larger than 1 in some cases, which breaks the commonly
used assumption that the order should be in the interval [0,1].

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the increase of water volume fraction, the state of soil
changes from hard to soft. When soil is solid, it can display evi-
dently the time dependence, such as the alteration of rate in load-
ing can have a manifest effect on the experimental results [1].
Thus, a large number of viscoelastic, viscoplastic or elasto-visco-
plastic constitutive models were developed to describe the time
dependent property, of which Maxwell model, Kelvin–Voigt model
and standard linear solid model are the most commonly used ones
[2]. On the other hand, with the increase of moisture content, soil
turn into flow matter such as the artificial soil suspensions and the
natural debris flow, appearing clear non-Newtonian fluid charac-
ters. Through the test observation, it is known that mud [3–5], deb-
ris flow [6,7], liquefied soil [8] and clay suspensions [9,10] exhibit
the Bingham plastic behavior, which is characterized by a yield
stress. Therefore, Bingham model is the most common one for such
non-Newtonian fluids [4,8,11–17]. Some researchers also gave sev-
eral modified Bingham models due to some special requirements,
for example, Garrido et al. [18] employed a double ternary Bing-
ham model to give the quantitative and satisfactory explanation
of this complex rheological behavior, and a power law and a
Bingham model is implemented for the flow of bulk materials by
Leonardi et al. [19]. Because the Bingham model mentioned above
is time independent and only focus on the impact of the magnitude
of strain rate, it is neither concerned with the effect of the loading
time length, nor with the influence of the strain rate change with
time. However, experimental observations show that some muddy

clay and clay dispersions with yield stress can display evidently
time dependent rheological behavior [9]. Thus, it is necessary to
develop a new model to describe time-dependence in Bingham
plastic fluid.

Fractional calculus allows one to define precisely non-integer
order integrals or derivatives. It has been found that fractional cal-
culus is a powerful tool for modeling the viscoelastic behaviors and
non-Newtonian fluid characteristics and particularly suited for
building the time-dependent constitutive model. The main reason
for this development is that a fractional model could describe sim-
ply and elegantly the complex characteristics of a viscoelastic
material. Therefore, the classical integer order Maxwell model,
Kelvin–Voigt model and standard linear solid model have been up-
graded to the fractional order ones for viscoelastic materials [20].
The rheological constitutive equations with fractional derivatives
play an important role in the description of the behavior of the
polymer solutions and melts. The starting point of the fractional
derivative model of a non-Newtonian fluid is also a classical differ-
ential equation which is modified by replacing the time derivative
of an integer order by the fractional calculus operators. Shan et al.
[21] used the fractional order derivative to establish the relaxation
models for non-Newtonian viscoelastic fluids in dual porous media
to research the seepage flow. Ezzat [22] constructed a new mathe-
matical model for thermoelectric MHD non-Newtonian fluid with
fractional order. Mahmood et al. [23] gave the exact analytic solu-
tions for the unsteady flow of a non-Newtonian fluid between two
cylinders by a fractional derivative model. In other cases, it has
been shown that the constitutive equations employing fractional
derivatives are also linked to molecular theories [24]. However, un-
til now, it has not been found that the Bingham model is modified
using fractional derivative.
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The aim of this study is to improve upon the current Bingham
model by fractional calculus, allowing the new model to describe
time dependence. In this paper, the pulling sphere experiment of
muddy clay was carried out under the condition of constant strain
rate and variable strain rate with time. The mechanical behaviors
of muddy clay are analyzed by the proposed fractional model.

2. Fractional Bingham model

It is well known that ideal solids obeys Hooke’s law, s(t)–e(t),
and Newtonian fluids satisfy Newton’s law of viscosity, s(t)–
d1e(t)/d1t, where s is stress, e is strain and t represents time.
d1e(t)/d1t is the first derivative of e(t) to time, i.e. the strain rate
_eðtÞ. So it is not difficult to imagine that an ‘‘intermediate’’ material,
which is intermediate between ideal solid and Newtonian fluid,
should follow

sðtÞ ¼ hka daeðtÞ
dta

; ð0 6 a 6 1Þ ð1Þ

here, k and h are material constants. Eq. (1) is often employed to
construct the component models, such as fractional Maxwell model,
and fractional Kelvin–Voigt model. Because there exists the time
fractional derivative in Eq. (1), the fractional model has a strong
time dependence.

The ideal Bingham model and the Herschel–Bulkley model are
the most common for fluid soil. The ideal Bingham model is writ-
ten as

s ¼ sy þ l _e ð2Þ

where sy, l, and _e represent yield strength, dynamic viscosity, and
shear strain rate, respectively. The model requires that motion of
the fluid does not begin until the yield strength of the fluid is ex-
ceeded, after which the fluid flows as a Newtonian fluid with a lin-
ear stress–strain rate relationship determined by the dynamic
viscosity of the fluid.

The Herschel–Bulkley model is as follows:

s ¼ sy þ g _en ð3Þ

where g represent ‘viscosity’ and the exponent n is adjusted to fit
measured data. When the exponent n ? 1, g ? l. Clearly, the
Herschel–Bulkley model can depict the nonlinear relationship be-
tween stress and strain rate, which can represent that the fluid dis-
play the non-Newtonian fluid property, when stress is over the
yield stress.

In order to enable Bingham model to involve the time affecting
factor, through putting Eq. (1) into Eq. (2), we define the fractional
Bingham model as

sðtÞ ¼ sy þ hka dae
dta

ð4Þ

here, e is shear strain.
Since the main concern in fluid mechanics is the relationship

between stress and strain rate but not the stress–strain one, Eq.
(4) can be rewritten as

sðtÞ ¼ sy þ hka da�1 _e
dta�1 ð5Þ

In this paper, we pay main attention to three different variation
condition of strain rate with time, _e ¼ c, _e ¼ ct, and _e ¼ ct2, where c
represents constant.

When _e ¼ c, based on Riemann–Liouville fractional calculus, Eq.
(5) can be expressed as

sðtÞ ¼ sy þ hka ct1�a

Cð2� aÞ ð6Þ

here, C(�) is gamma function.
For a long time, it is always thought that a vary between 0 and

1. Hence, we here also provisionally assume that a is greater than 0
and less than 1.

If 0 < a < 1, it is known from Eq. (6) that the stress is not con-
stant but is gradually increasing with time when strain rate remain
unchanged. This indicates that the fractional Bingham model can
describe the time dependence.

When strain rate is linear increasing with time, _e ¼ ct, the frac-
tional Bingham model can be

sðtÞ ¼ sy þ hka ct2�a

Cð3� aÞ ð7Þ

The strain rate form of Eq. (7) is

sð _eÞ ¼ sy þ hka ca�1 _e2�a

Cð3� aÞ ð8Þ

Clearly, when 0 < a < 1, stress will quickly increase with the ris-
ing strain rate due to exponent 2�a > 1.

For _e ¼ ct2, Eq. (5) can be transformed into

sðtÞ ¼ sy þ hka ct3�a

Cð4� aÞ ð9Þ

and

sð _eÞ ¼ sy þ hka cða�1Þ=2 _eð3�aÞ=2
Cð3� aÞ ð10Þ

Analogously with the case of _e ¼ ct, when 0 < a < 1 and _e ¼ ct2,
stress will also rapidly grow with the evolution of time.

Clearly, under the assumption of 0 < a < 1, when _e ¼ ct or
_e ¼ ct2, in accordance with the fractional model, a shear thicken
behavior will be following after the applied stress is over the yield
strength. If we suppose that a can be greater than 1 and less than
two, the fluid will flow as a shear thinning fluid because the corre-
sponding exponent of strain rate in Eq. (8) and (10) is less than 1.

Perhaps one regards the Herschel–Bulkley Bingham model and
the fractional model as the same since Eqs. (3), (8) and (10) all have
the exponent shape of strain rate; nevertheless, the exponent form
just as in Eqs. (8) and (10) can obtained from the fractional Bing-
ham model only when the strain rate is the special time function,
such as _e ¼ ctm, where m is a real number. In other words, the rela-
tionship between time and strain rate determines the stress func-
tional form, derived from the fractional Bingham model, while the
Herschel–Bulkley Bingham model do not take into account the
relationship between time and strain rate. This clearly shows that
the fractional Bingham model owns time dependence.

3. The pulling sphere test

In our study, the pulling sphere test in muddy clay was carried
out for model validation. The detail on this experiment will be
introduced in this section.

We measured the force F on a steel sphere while and after it
moved horizontally through a reconstituted muddy clay. The
experimental apparatus shown schematically in Fig. 1 is modified
on the basis of that described in Ref. [25]. The reconstituted muddy
clay was contained in a rectangular strengthened glass container
550 mm long, 340 mm wide and 400 mm tall, closed at the bottom
but open at the top. The rectangular container is large enough that
wall effects are not expected to be important. A 40 mm steel
sphere was attached to a calibrated load cell by a length of mono-
filament nylon thread. The load cell had a maximum capacity of
20 kg and a response time that was faster than the interval be-
tween recorded data points. It was mounted on a linear actuator
which was driven by a computer controlled servomotor. The
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