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a b s t r a c t

This paper presents a semi-analytical method for the buckling analysis of composite panels reinforced
with omega stiffeners and subjected to combined loading conditions of biaxial loads and shear. The
approach is based on the representation of the panel as an assembly of plate elements, allowing to
capture local buckling modes involving skin and stiffener deflections. The panel model includes also
the possibility of accounting for the stiffener foot. Trigonometric shape functions are introduced to
describe the buckling patterns, while the buckling equations are derived through the application of the
minimum potential energy principle. The comparison with Abaqus finite element analyses is presented,
demonstrating, for a wide variety of test cases, percent differences below 9% and a good accuracy of the
computed buckling modes. The computational speed up is of the order of 100, suggesting the use of the
formulation in the context of preliminary design loops, sensitivity analyses or design optimizations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite stiffened panels are commonly used in load-bearing
components of aerospace structures. As they usually operate under
combined loads that can promote buckling phenomena, the ability
to accurately predict the local buckling is an essential task since
the preliminary design phases.

The most common approach to evaluate the buckling load is
based on the finite element method [1,2], whose advantages rely
on the accuracy of the results, as well as the possibility of account-
ing for various boundary and loading conditions. However, a major
drawback is represented by the time to perform the analyses,
which can be inappropriate in the early design stages. Further-
more, geometric modeling is required, and finite element meshes
have to be created for each configuration under investigation.

The finite strip method is a numerical procedure specifically
developed for the analysis of prismatic structures [3] and is charac-
terized by an improved computational efficiency. The method has
been successfully applied to assess the buckling behaviour of stiff-
ened panels [4], to study the effects of different stiffener geome-
tries [5], and to perform structural optimizations with buckling
requirements [6].

An even more efficient approach consists in the use of ad hoc
developed analytical formulations. In this case, the buckling load
is calculated in a reduced time, so that sensitivity studies and
design optimizations can be easily performed [7–9]. The accuracy
of the results can be strongly affected by several assumptions
regarding the modeling of the panel, the loading conditions and
the stacking sequences. Some formulations available in literature
simplify the stiffened panels as isolated plates with simply-
supported or clamped constraints along the skin edges. The
introduction of this assumption allows to derive, in the case of
compression loads, the expression for the buckling load in a
closed-form manner. The solutions are available for panels of
isotropic and orthotropic [10] materials, as well as symmetric [11]
and unsymmetric [12] laminates. More complex loading conditions
are usually handled with semi-analytical strategies. For instance,
combined loads are studied by Chai and Hoon [13] for simply-
supported panels, while linearly varying biaxial in-plane loads
are accounted for in the formulation of Romeo and Frulla [14].
Similarly, Shufrin et al. [15] consider general in-plane conditions
by applying the extended method of Kantorovich. The assumption
of simply-supported or clamped edges does not account for the
finite amount of restraint provided by the stiffeners and, for this
reason, can be the source of inaccurate results. In some other studies,
the stiffener is modeled as a torsion spring or a De Saint–Venant
torsion bar. Even in this case, the closed-form solutions are
generally limited to the case of compression loads. Closed-form
solutions are derived for orthotropic panels also by Bisagni and
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Vescovini [16] and Mittelstedt and Beerhorst [17], representing the
stiffeners as torsion bars and torsion springs, respectively. Biaxial
compression, in-plane bending and shear loads are introduced in
the semi-analytical formulation of Bedair [18] for isotropic panels
partially restrained against rotation and in-plane translation.
Wittenberg et al. [19] investigate the shear buckling of stiffened
panels with orthotropic skin lay-up, considering the flexural and
torsional stiffness of the stiffeners with a formulation based on
the method of Galerkin. In general, the methods accounting for
the restraint to the edge rotation guarantee more accurate buckling
predictions in comparison to those based on the assumption of
simply-supported and clamped conditions. However, they still
furnish a simplified description of the interaction between the
skin and the stiffener, and local stiffener buckling modes cannot
be captured.

The methods where both the skin and the stiffeners are
modeled as two-dimensional plate elements allow for a more
accurate representation of the skin-stiffener interaction, and both
skin and local stiffener instabilities can be accounted for. The
formulation of Fujikubo and Yao [20] derives closed-form solutions
for the buckling load of isotropic stiffened panels, using a plate
assembly model and energy principles and considering compres-
sion loads only.

Semi-analytical strategies are developed by Byklum and Amdahl
[21] and Buermann et al. [22] in the context of the large deflection
analysis of J-stiffened panels. They consider multiaxial loading
conditions of compression and shear loads for isotropic materials.
Composite materials were considered by the authors [23] in a
formulation where double sines functions were used to represent
the out of plane displacements. In general, all the mentioned
methods introduce the simplifying assumption of neglecting the
foot of the stiffener, i.e. the flange connecting the stiffener to the
skin.

The present work discusses a plate assembly model for the
buckling analysis of composite omega stiffened panels. Compared
to most of the other methods in literature, the formulation intro-
duces the possibility of considering the presence of the foot of
the stiffener. The spectrum of loading conditions and laminate
lay-ups is extended to include biaxial tension/compression and
shear. Flexural anisotropy is accounted for, so that a wide class
of typical aeronautical laminates can be studied.

The formulation is based on the minimum potential energy
principle, which is applied referring to the method of Ritz. The gov-
erning equations are derived analytically and the computation of
the buckling load is reduced to the solution of a set of eigenprob-
lems of small dimension. The design tool is applied to study a ser-
ies of panels, presenting the comparison with the finite element
results in terms of buckling loads, buckled configurations and
interaction curves. The development of the formulation is dis-
cussed throughout the paper, including considerations on the sym-
metry and the anti-symmetry of the buckling shapes, making
possible a significant reduction of the computational effort.

2. Formulation

The work deals with the study of the buckling behaviour of
omega flat stiffened panels made of composite materials and sub-
jected to combined in-plane loads. The formulation considers the
case of a large structure undergoing local buckling so that the anal-
ysis can be performed referring to a smaller unit, representative of
the behaviour of the overall structure [21–23]. In particular, the
unit is composed of two stiffeners, one bay and two half-bays, as
reported in Fig. 1(a). The transverse edges of the panel are sim-
ply-supported, as the effect of the elasticity along these sides has
a minor impact on the panel buckling load, while the longitudinal
edges are subjected to periodic boundary conditions.

Only local buckling modes are investigated. The possible local
buckling models present nodal lines along the intersections of
the plate elements composing the panel. Global buckling modes,
i.e. modes characterized by halfwaves encompassing several stiff-
eners, are not investigated.

The main idea of the present formulation is to represent the
panel with a small number of plate elements, whose out of plane
deflections are described with trigonometric shape functions. By
introducing considerations regarding the symmetry and the anti-
symmetry of the buckling modes, the model of Fig. 1(a) is reduced
to the four plate element model of Fig. 1(b). The IDs of the four ele-
ments are highlighted in the figure together with the longitudinal
length a, which is common to all the elements composing the
panel.

The generic plate element i is reported in Fig. 2. A Cartesian
coordinate system is taken over the midsurface of each plate ele-
ment. The x-and y-axis are directed along the longitudinal and
the transverse directions, while the midsurface corresponds to
z ¼ 0. The figure illustrates also the loading conditions of biaxial
compression (or tension) and shear, that can be applied separately
or in combination.

The panels here analyzed are thin, and the transverse shear
strains are assumed negligible. They are composed of laminates
with an arbitrary number of layers, under the assumptions of sym-
metric lay-up, i.e. Bik ¼ 0, and null membrane anisotropy, i.e.
A16 ¼ A26 ¼ 0. On the other hand, the bending-twisting coupling
terms D16 and D26 are not neglected, so that the formulation can
be applied to the study of panels made of symmetric and balanced
laminates. The constitutive equation of the generic plate is then
[10]:
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where the terms Aik and Dik are the in-plane and bending stiffnesses,
Nik and Mik are the internal forces and the moments per unit length,
�ik are the components of the membrane strain tensor, and w is the
out of plane displacement. The comma followed by the coordinate
denotes the differentiation with respect to that coordinate.

2.1. Total potential energy

The problem is formulated referring to the principle of the min-
imum potential energy, and the method of Ritz is applied to obtain
an approximate solution. The main advantage of adopting a varia-
tional formulation relies in the need of satisfying only the essential
boundary conditions of the problem. Indeed, the natural conditions
involving the equilibrium of the forces exchanged between the
adjacent plates elements could be hardly fulfilled, as it would be
required in the context of a strong form formulation.

The total potential energy of the panel is given by the sum of the
contributions of the plate elements composing the section, so:

P ¼
XNp

i

Pi þ
XNc

i

Pi ð2Þ

where Np is the number of plates to discretize the section, Nc is the
number of compatibility conditions, and Pi is a penalty term which
is added to the functional to enforce the compatibility conditions
between the adjacent plates. The first term in the right-hand side
of Eq. (3) is:
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