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a b s t r a c t

The paper deals with a recently developed method of sampling surfaces (SaS) and its implementation for
the three-dimensional (3D) steady-state problem of thermoelasticity for laminated functionally graded
(FG) plates subjected to thermomechanical loading. The SaS method is based on choosing inside the
nth layer In not equally spaced SaS parallel to the middle surface of the plate in order to introduce
temperatures and displacements of these surfaces as basic plate variables. Such an idea permits the
presentation of the thermoelastic laminated FG plate formulation in a very compact form. The SaS
are located inside each layer at Chebyshev polynomial nodes that provides a uniform convergence of
the SaS method. This means that the SaS method can be applied efficiently to the 3D stress analysis
for thermoelastic laminated FG plates with a specified accuracy utilizing the sufficient number of SaS.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the functionally graded (FG) materials are widely
used in mechanical engineering due to their advantages compared
to traditional laminated materials [1,2]. However, the study of FG
materials is not a simple task because the material properties
depend on the spatial coordinate and some specific assumptions
regarding their continuous variations in the thickness direction
are required [3]. This fact restricts the implementation of the Pag-
ano approach [4,5] and the state space approach [6,7] for the 3D
exact analysis of FG simply supported rectangular plates. Another
popular approach to 3D exact solutions, namely, asymptotic
approach was applied efficiently to FG plates subjected to thermo-
mechanical loading [8,9]. A new approach to closed-form elasticity
solutions for FG isotropic and transversely isotropic plates is con-
sidered in papers [10,11]. These solutions are based on the general
solution of the equilibrium equations of inhomogeneous elastic
media [12]. The efficient approach to the 3D exact analysis of
thermoelasticity has been proposed by Vel and Batra [13,14]. They
studied the static and transient thermoelastic problems for FG
simply supported plates with the material properties presented
by Taylor series expansions through the thickness coordinate.
Ootao and his coauthors [15–17] obtained the 3D exact solutions
for the transient thermoelastic response of FG strips and rectangu-
lar plates with simply supported edges under nonuniform heating

on outer surfaces. The original approach to analytical solutions for
the FG beams and plates was developed in contributions [18,19].
This approach is based on the so-called theory of directed surfaces
[20,21]. Recently, the sampling surfaces (SaS) approach has been
applied to 3D exact thermal and thermoelastic analyses of lami-
nated composite plates and shells [22–24]. The 3D stress analysis
of piezoelectric FG plates and shells on the basis of the SaS method
is given in [25,26]. However, the SaS approach has not been applied
to 3D steady-state thermoelasticity problems for laminated FG
plates yet.

According to the SaS method [27,28], we choose inside the nth
layer In not equally spaced SaS XðnÞ1;XðnÞ2; . . . ;XðnÞIn parallel to the
middle surface of the plate and introduce temperatures
TðnÞ1; TðnÞ2; . . . ; TðnÞIn and displacement vectors uðnÞ1;uðnÞ2; . . . ;uðnÞIn

of these surfaces as basic plate variables, where In P 3. Such choice
of unknowns in conjunction with the use of the Lagrange polyno-
mials of degree In � 1 in the thickness direction permits the pre-
sentation of governing equations of the proposed thermoelastic
FG plate formulation in a very compact form.

It should be mentioned that the SaS method with equally
spaced SaS does not work properly with the Lagrange polynomials
of high degree because of the Runge’s phenomenon [29]. This phe-
nomenon can yield the wild oscillation at the edges of the interval
when the user deals with any specific functions. If the number of
equally spaced nodes is increased then the oscillations become
even larger. However, the use of the Chebyshev polynomial nodes
[30] inside each layer can help to improve significantly the behav-
ior of the Lagrange polynomials of high degree because such a

http://dx.doi.org/10.1016/j.compstruct.2014.10.012
0263-8223/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: gmkulikov@mail.ru (G.M. Kulikov).

Composite Structures 120 (2015) 315–325

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.10.012&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.10.012
mailto:gmkulikov@mail.ru
http://dx.doi.org/10.1016/j.compstruct.2014.10.012
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


choice allows one to minimize uniformly the error due to the
Lagrange interpolation.

Currently, the use of layer-wise theories for the analysis of lam-
inated composite plates is widely accepted. The most general form
of layer-wise kinematics presented in Carrera’s unified formulation
[31] is written as

uðnÞi ¼ F0u½n�1�
i þ F1u½n�i þ

X
r

Fru
ðnÞ
ir ; x½n�1�

3 6 x3 6 x½n�3 ;

F0ðx3Þ ¼
x½n�3 � x3

hn
; F1ðx3Þ ¼

x3 � x½n�1�
3

hn
; Fr x½n�1�

3

� �
¼ Fr x½n�3

� �
¼ 0;

where uðnÞi ðx1; x2; x3Þ are the displacements of the nth layer

(i = 1,2,3); u½n�1�
i ðx1; x2Þ and u½n�i ðx1; x2Þ are the displacements of the

bottom and top surfaces of the nth layer (interfaces); uðnÞir ðx1; x2Þ
are the generalized displacements of the nth layer (r = 2,3, . . . ,R);

Fr(x3) are the prescribed polynomials of degree r; x½n�1�
3 and x½n�3 are

the transverse coordinates of layer interfaces X[n�1] and X[n]

(Fig. 1); hn ¼ x½n�3 � x½n�1�
3 is the thickness of the nth layer; x1 and x2

are the Cartesian coordinates of the middle surface X; x3 is the
thickness coordinate normal to the middle surface; the index n
identifies the belonging of any quantity to the nth layer and runs
from 1 to N, where N is the number of layers. Historically, the first
order layer-wise models [32–35] were first. Then, the second order
models with R = 2 and third order models with R = 3 were devel-
oped [36–38]. The fourth order layer-wise model (R = 4) is utilized
in Carrera’s unified formulation [39–41], where polynomials Fr are
evaluated as a difference between two Legendre polynomials of
degrees r and r � 2.

The origins of using the SaS can be found in contributions
[42,43] in which three, four and five equally spaced SaS are
employed. The SaS method with the arbitrary number of equi-
spaced SaS is considered in [44]. The more general approach with
the SaS located at Chebyshev polynomial nodes has been devel-
oped later [27,28]. Note also that the term SaS should not be con-
fused with such terms as a mathematical surface or a virtual
surface, which are extensively utilized in Carrera’s unified formula-
tion. This is due to the fact that in Carrera’s unified formulation the
generalized displacements of layers uðnÞir are employed. On the con-
trary, in a developed SaS formulation all basic variables have a
clear mechanical sense because of the introduction of tempera-
tures and displacements of SaS as plate unknowns. The similar
technique is adopted for the description of material properties,
which are also referred to SaS. This gives the opportunity to derive
the 3D exact solutions for laminated FG plates with a prescribed
accuracy utilizing the sufficiently large number of SaS located at
Chebyshev polynomial nodes inside each layer. Furthermore, in a

SaS formulation for shells such choice of displacements as funda-
mental unknowns yields the strain–displacement equations, which
exactly represent rigid-body motions of the shell in any convected
curvilinear coordinate system [28]. The latter is straightforward for
development of the exact geometry solid-shell elements [45,46].
The term ‘‘exact geometry’’ reflects the fact that the parametriza-
tion of the middle surface is known and, therefore, the coefficients
of the first and second fundamental forms of its surface can be
taken exactly at each element node.

2. Description of temperature and temperature gradient fields

Consider a laminated FG plate of the thickness h. The transverse
coordinates of SaS of the nth layer are defined as

xðnÞ13 ¼ x½n�1�
3 ; xðnÞIn

3 ¼ x½n�3 ;

xðnÞmn
3 ¼ 1

2
x½n�1�

3 þ x½n�3

� �
� 1

2
hn cos p 2mn � 3

2ðIn � 2Þ

� �
; ð1Þ

where In is the number of SaS corresponding to the nth layer; the
index mn identifies the belonging of any quantity to the inner SaS
of the nth layer and runs from 2 to In � 1, whereas the indices
in,jn,kn to be introduced later for describing all SaS of the nth layer
run from 1 to In. Besides, the tensorial indices i,j,k,l range from 1
to 3 and Greek indices a,b range from 1 to 2.

Remark 1. The transverse coordinates of inner SaS (1) coincide
with coordinates of the Chebyshev polynomial nodes [30]. This fact
has a great meaning for a convergence of the SaS method [22–28].

The relation between the temperature T and the temperature
gradient C is given by

C ¼ $T: ð2Þ
In a component form, it can be written as

Ci ¼ T ;i; ð3Þ

where the symbol (. . .),i stands for the partial derivatives with
respect to coordinates xi.

We start now with the first and second fundamental assump-
tions of the proposed thermoelastic laminated plate formulation.
Let us assume that the temperature and temperature gradient
fields are distributed through the thickness of the nth layer as
follows:

TðnÞ ¼
X

in

LðnÞin T ðnÞin ; x½n�1�
3 6 x3 6 x½n�3 ; ð4Þ

CðnÞi ¼
X

in

LðnÞin CðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð5Þ

where TðnÞin ðx1; x2Þ are the temperatures of SaS of the nth layer

XðnÞin ; CðnÞini ðx1; x2Þ are the components of the temperature gradient

at the same SaS; LðnÞin ðx3Þ are the Lagrange polynomials of degree
In � 1 defined as

TðnÞin ¼ T xðnÞin3

� �
; ð6Þ

CðnÞini ¼ Ci xðnÞin3

� �
; ð7Þ

LðnÞin ¼
Y

jn–in

x3 � xðnÞjn3

xðnÞin3 � xðnÞjn3

: ð8Þ

The use of Eqs. (3), (4), (6) and (7) yields

CðnÞina ¼ T ðnÞin;a ; ð9Þ

CðnÞin3 ¼
X

jn

MðnÞjn xðnÞin3

� �
T ðnÞjn ; ð10Þ

Fig. 1. Geometry of the laminated plate.
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