
Quantitative predictions of the linear viscoelastic properties of entangled
polyethylene and polybutadiene melts via modified versions of modern tube
models on the basis of atomistic simulation data

Pavlos S. Stephanou a,⇑, Vlasis G. Mavrantzas b,⇑
a Department of Mathematics and Statistics, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
b Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece

a r t i c l e i n f o

Article history:
Available online 28 April 2013

Keywords:
Modified tube model
Leygue et al. model
Dual constraint model
Molecular dynamics
Primitive path
Multi-scale modeling

a b s t r a c t

We present a hierarchical, three-step methodology for predicting the linear viscoelastic properties of
entangled polymer melts. First, atomistic trajectories accumulated in the course of long molecular
dynamics simulations with moderately entangled polymer melts are self-consistently mapped onto the
tube model to compute the segment survival probability function w(s, t) for primitive paths. Extracted
directly from the atomistic simulations, the computed w(s, t) accounts for all possible dynamic mecha-
nisms affecting chain motion in entangled polymers such as reptation, contour length fluctuation, and
constraint release. In a second step, the simulation predictions for w(s, t) are compared with modern ver-
sions of the tube model, such as the dual constraint model of Pattamaprom et al. and the Leygue et al.
model; the comparison reveals ways through which the two models can be improved and parameterized
on the basis of the direct molecular simulation data. The key parameters turn out to be the entanglement
chain length Ne and the entanglement time se, both of which can be reliably extracted from the simula-
tions. In a third step, the modified versions of the two models are invoked to predict the linear viscoelas-
tic properties of the polymer under study over a broad range of molecular weights. The power of the new
methodology is illustrated here for the case of linear polyethylene (PE) and cis- and trans-1,4 polybuta-
diene (PB) melts for which atomistic molecular dynamics data have already been obtained recently. We
present results from the new approach for the zero-shear-rate viscosity g0, and the storage G0 and loss G00

moduli of the three polymers as a function of their molecular weight (MW), and a direct comparison with
experimentally measured rheological data.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamics and rheology in entangled polymeric liquids is gov-
erned by topological constraints known as entanglements which
dominate molecular forces and prevent chains from crossing one
the other. Despite the complexity of the corresponding interac-
tions, the pioneering works of Edwards, de Gennes and Doi [1–6]
demonstrated that one can account for uncrossability constraints
with a simple but powerful mean-field theory known as reptation.
The reptation theory is built on the concept of the tube model
defining a space around the chain within which this is allowed to
execute motion. Over the years, the tube model coupled with
mechanisms such as reptation, constraint release, contour length
fluctuations and arm retraction in the case of branched molecules

has developed to a quantitative theory for the description of the
key rheological properties of polymers, especially in the linear vis-
coelastic regime [7]. Entangled melts of monodisperse and polydis-
perse linear polymer chains, of star and H-shaped polymers, and of
long- and short-chain branched chains can all be described rather
quantitatively in the framework of such a model.

Reptation involves a geometric reduction from the phase space
of the detailed chain to that of its primitive path (PP). The PP is the
shortest path that connects the two ends of the chain (which are
considered as fixed in space) and follows the main chain contour
without violating any topological constraints along the chain from
one end to the other. The following two quantities are then intro-
duced: the diameter dt of the tube (effectively representing the
strength of the topological constraints on chain dynamics) and
the contour length L of the PP. From a mathematical point of view,
the most fundamental quantity in the theory is the tube segment
probability function w(s, t) [1,2,5]. This is defined as the probability
that a segment s along the PP contour will remain inside the initial
tube after a time t; it can also be considered as the average
probability that the corresponding PP segment has fully relaxed
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the stress initially imposed on it after a time t. If this function is
known, all linear viscoelastic (LVE) properties of the system can
be obtained in a rather straightforward manner [1].

For chain reptation in the space of fixed obstacles, w(s, t) obeys
a typical diffusion equation with appropriate initial and boundary
conditions. For chain reptation in a polymer melt, one should fur-
ther account for the fact that neighboring chains are not fixed
obstacles but they move too, thereby continuously destroying
and creating new entanglements. The chain itself also changes its
conformation as it diffuses through the melt, and this causes fluc-
tuations in its contour length. Thus, for the tube model to quanti-
tatively describe the dynamics of real polymer melts, it has to
account further for mechanisms such as contour length fluctuation
(CLF) [8] due to the ‘‘breathing’’ motion of chain ends and con-
straint release (CR) related to the destruction of topological con-
straints due to the relaxation of chains surrounding the reference
chain (or the tube itself) [9].

It is thus not surprising that, since the 1970s when the repta-
tion picture and the tube concept were introduced, the tube mod-
el has undergone numerous modifications [7], most of them
motivated either by the need to bring model predictions into a
quantitative comparison with experimental data for model sys-
tems or by the need to describe more complicated chain architec-
tures. Two such typical models are the dual constraint model of
Pattamaprom et al. [10] and the Leygue et al. model [11]. These
models can indeed offer quantitative predictions of directly mea-
sured rheological data for a variety of polymer architectures, but
often this comes with the need to assume non-realistic values for
some of the fundamental model parameters. We mention, for
example, the value of the entanglement time se (strictly defined
as the time after which a polymer chain starts to feel the tube
constraints) typically chosen to fit experimental data [10,12,13].
For polyethelene (PE) at 177 �C and polybutadiene (PB) at
140 �C, se is computed from direct molecular dynamics (MD) sim-
ulations to be about 3 and 2–4 ns, respectively [12–16]. By mak-
ing use of the temperature shift factor aT reported by Raju et al.
[17] for PE and Colby et al. [18] for PB, the corresponding values
are 3.75 ns for PE at 190 �C and 44–65 ns for PB at 25 �C which
differ appreciably from the values (7 ns for PE at 190 �C and
350 ns for PB at 28 �C) needed for modern tube models to fit
experimental data [10].

A remarkable development recently has been the computation
of the function w(s, t) describing the survival probability of PP seg-
ments directly from atomistic molecular dynamics (MD) data [12–
16]. The methodology (which accounts directly for CLF and CR
mechanisms) first maps long atomistic MD trajectories onto time
trajectories of primitive chains and then documents primitive
chain motion in terms of a curvilinear diffusion in a tube-like re-
gion around the coarse-grained chain contour. In the calculations,
the effective tube diameter is independently evaluated by observ-
ing the effect of tube constraints either on atomistic displacements
or on the displacement of primitive chain segments orthogonal to
the initial PP. The approach accounts both for chain reptation
longitudinally inside the constraining tube as well as for local
transverse fluctuations driven from constraint release and regener-
ation mechanisms, the latter causing parts of the chain to venture
outside the average tube surface for certain periods of time. The
new approach opened the way to bridging the outcome of direct
MD simulations with tube models, since both can be compared
on the basis of their prediction for the tube segment probability
function w(s, t) of the same system [12–16]. Furthermore, it allows
one to utilize the results of the direct PP analysis in order to pro-
pose modifications to the models [16].

Our effort in this paper is to capitalize on this work and develop
a systematic methodology that will enable the direct computation
of the LVE properties of high-MW polymer melts by properly trans-

ferring information from lower-level (atomistic MD) simulations to
closed-form tube models having the form of a reaction–diffusion-
like partial differential equation.

Our paper has been structured as follows: In the following sec-
tion we provide a concise summary of the modifications (see Ref.
[16] for more details) made to the tube models (the dual constraint
and the Leygue et al. ones) employed here to describe the rheolog-
ical properties of long polymer melts. The corresponding original
versions of these models have been presented in the Appendix of
Ref. [12]. Here, we only note that, as far as the dual constraint mod-
el is concerned, wherever in that Appendix we had used 1� cs,
here we replace it by s, because in the original model s 2 � 1

c ;
1
c

� �
with c = 2 for a linear chain, whereas here and in Refs. [12–16]
s 2 ½0;1�. In Section 3 we provide some details of the numerical
methodology used to solve the two models along with the values
of the parameters employed in each one of them and of what
experimental data we compared their predictions with. The paper
proceeds with Section 4 where the major results are presented and
concludes with Section 5 discussing the most important conclu-
sions and future directions.

2. Brief account of the modified dual constraint and Leygue
et al. models

2.1. The modified dual constraint model

In the modified dual constraint or Pattamaprom et al. model, the
reaction–diffusion equation in solved in two stages. In the first stage,
the equation incorporates only chain reptation and CLF effects but
omits CR (i.e., it initially considers chain motion in a fixed tube):

@

@t
w�ðs; tÞ ¼ 1

p2sd

@2

@s2 w�ðs; tÞ � 1
s�ðsÞw

�ðs; tÞ; ð1aÞ

where

searlyðsÞ ¼ se þ 3p3=2Z
4c2 s2

� �b
sR;

s�lateðsÞ ¼
sR
c2 exp½U�ðsÞ�;

U�ðsÞ ¼ 3
2

Z
c s2;

ð1bÞ

with the value of the exponent b ¼ ð2bÞ�1 taken from the scaling
/ðtÞ � tb when se < t < sR, and c = 2 for a linear chain. The partial
differential equation (PDE) Eq. (1a) is subject to the following initial
and boundary conditions:

w�ðs; t ¼ 0Þ ¼ 1
w�ðs ¼ 0; tÞ ¼ w�ðs ¼ 1; tÞ ¼ expð�t=seÞ

: ð1cÞ

The newly introduced boundary condition in the last equation is
obtained, self-consistently, directly from (1a) by considering the
case of times t� sd for which the reptation term in (1a) represented
by the second derivative may be safely neglected [16]. Then, one
obtains as a solution the function w�ðs; tÞ ¼ exp½�t=sðsÞ�. Since close
to chain ends early fluctuations prevail, sðsÞ ¼ searly ) sð0Þ ¼
sð1Þ ¼ se, thus w�ð0; tÞ ¼ w�ð1; tÞ ¼ expð�t=seÞ. Such a time depen-
dence has indeed been observed in simulations [12–16]. The expres-
sions for the early- and late-time CLF effects have been borrowed
from the works of Doi [8] and Milner and McLeish, [19] respectively
(see also the original papers of Pattamaprom et al. [10] for more
details). s�ðsÞ, on the other hand, is given by

s�ðsÞ ¼
searlyðsÞ for s < C�1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

searlyðsÞs�lateðsÞ
p

for C�1 < s < C�2;

s�lateðsÞ for s < C�2;

8><
>: ð1dÞ

where C�1 denotes the segment position close to chain ends corre-
sponding to the first crossover of searly to s�late and C�2 the segment
position for the second crossover of searly to s�late deeper inside the
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