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a b s t r a c t

Herein, modes of vibration of a novel type of composite laminates, manufactured by tow-placement
machines and which are called Variable Stiffness Composite Laminates (VSCL), are of interest. Layerwise
theory is chosen, because it leads to an accurate prediction of displacements through the thickness of
laminates, even when these are thick. Furthermore, it naturally has the capability of modelling the bend-
ing-membrane coupling that occurs on free vibration of VSCL plates with unsymmetric stacking
sequences. The continuity of displacements at layer interfaces is imposed and in-plane displacements
vary in a zig-zag fashion along the thickness. The accuracy of the model is confirmed by testing Constant
Stiffness Composite Laminates (CSCL) analysed in the literature by others, who employed either Equiva-
lent Single Layer (ESL) or layerwise theories. Abaqus commercial finite element software is as well
employed in order to test the present approach. Finally, published natural frequencies of VSCLs, which
were studied by an ESL theory, are compared with frequencies resulting from the present layerwise the-
ory. The verification of the proposed model is followed by an investigation on the effect of curvilinear
fibre orientation parameters on natural frequencies of thin to thick composite plates, with symmetric
and unsymmetric lay-ups.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The development of manufacturing technologies for composite
materials has received much attention over the past few decades.
Advanced fibre-reinforced composite materials can be produced
by changing their macro-scale characteristics, one of which is the
fibre orientation, which can be varied along a curvilinear path to
produce Variable Stiffness Composite Laminates (VSCL). This idea
was proposed by Hyer in [1,2], to overcome the discontinuities that
occur when the fibre orientation is changed from one part of a
structure to another. Later, manufacturing possibilities of tow
placement machines were explored by Waldhart in [3]. Manufac-
turing VSCL with parallel fibre paths was proposed and the in-plane
responses of shifted and parallel VSCL were compared.

Various analyses have been performed to study the structural
behaviour of VSCL [4], of which we recall investigations devoted
to analyse vibrations of VSCL plates. Classic Laminated Theory
(CLT) was applied to study the vibration of VSCL plates in [5–7].
However, CLT is applicable only for thin laminates due to the lack
of transverse shear strains. More recently, the attention has been

drawn toward thick VSCL plates, in which one has to utilise shear
deformation laminated theories. Non-linear vibration of VSCL
plates was analysed by employing a First order Shear Deformation
Theory (FSDT) in [8,9]. A Third order Shear Deformation Theory
(TSDT) was employed in [10] to study the free vibration of thin
to moderately thick VSCL plates. However, both FSDT and TSDT
theories are Equivalent Single Layer (ESL) theories, which can fail
to predict the response of considerably thick laminates [11]. More
advanced theories are required to better predict the cross section
warping and displacement distributions through the thickness.
Herein, a layerwise theory is of interest, in which each layer is
modelled as an independent plate and the continuity of displace-
ment is imposed at the layers’ interfaces [12]. Layerwise theory
should lead to more accurate vibration analysis. Furthermore, with
a layerwise model the analysis of laminates that are not symmetric
about their middle plane is straightforward and, to the best of
authors’ knowledge, vibration of unsymmetric VSCL plates was
only considered once, in [13], where an ESL-CLT model, applicable
to thin plates, was employed.

This work aims to analyse the linear modes of vibration of thin
to thick VSCL plates, based on a layerwise theory and p-version
finite element method, which is an extension of the element used
to study the non-linear deflection, in the static regime, of VSCL
plates in [14]. At first, the proposed model is verified. To do so,
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Abaqus commercial software and the published literature available
on layerwise or ESL higher order theories is utilised. Then, taking
benefit of the capability of modelling thick composite laminates
with any lay-ups, thick symmetric and unsymmetric VSCL plates
are studied. The effect of fibre orientation on the modes of vibra-
tion of VSCL plates is investigated by computing the natural fre-
quencies of vibration and plotting the mode shapes.

2. Formulation

First order displacement fields are adopted for each individual
layer. The layers are considered to be perfectly bonded at the inter-
faces by imposing continuity of displacements. The displacement
field for the layer kth is presented as

Ukðx;y;zk;tÞ¼
1
2
ðukðx;y;tÞþukþ1ðx;y;tÞÞ� zk

hk
ðukþ1ðx;y;tÞ�ukðx;y;tÞÞ;

Vkðx;y;zk;tÞ¼
1
2
ðvkðx;y;tÞþvkþ1ðx;y;tÞÞ� zk

hk
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Wkðx;y;zk;tÞ¼Wkðx;y;tÞ;
ð1Þ

where u, v, and w with superscripts k and k + 1 are the translations
of layer kth at its bottom and top side, respectively. hk is the thick-
ness of layer kth and t is time. Each layer is modelled with respect to
its Cartesian coordinate system.

The three displacement components of a point in each individ-
ual layer may be expressed in terms of polynomial shape functions
Nj

iðn;gÞ; i ¼ 1� n; j ¼ u;v ;w, in the local coordinate system and
unknown coefficients q(t), which are determined later, by solving
the equations of motion
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i¼1
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ð2Þ

A couple of sets of polynomial shape functions is employed: one set,
Nu

i ðn;gÞ ¼ Nv
i ðn;gÞ, for the in-plane displacement components;

another set, Nw
i ðn;gÞ, for the transverse displacements [15,16]. The

accuracy of the model depends on two distinct issues. On the one
hand, it depends on the number of individual layers employed, that
is, on the upper limit of k in Eq. (2) and Fig. 1. On the other hand,
accuracy can be increased by using more polynomial shape func-
tions and generalised coordinates for each layer of the model, i.e.
by increasing n in Eq. (2). Hence, the total number of degrees of
freedom in the formulation is associated both with the number of
layers of the model – which is not necessarily the number of com-
posite plies – and the number of shape functions. It is mentioned
that it was here decided to use the same number of shape functions
for in-plane and out-of-plane displacement components.

This type of finite element method, where to increase accuracy
one increases the number and order of the shape functions
employed, keeping the mesh unchanged, is known as p-version
finite element method. It is noted that due to the use of high order
shape functions, shear locking does not occur. In addition, unlike
what happens in ESL theories, in a layerwise formulation the
dimension of the global stiffness and mass matrices can be altered
by increasing the number of layers of the model, and consequently,
more accurate models can be derived.

Because rectangular plates are analysed here, one p-element is
sufficient; hence the global and local coordinates are related by
Eq. (3).

x ¼ an
2
;

y ¼ bg
2
;

ð3Þ

where a and b are the length and width of the laminate, whereas n
and g denote a non-dimensional coordinate system.

The strain tensor can be divided into in-plane and out-of-plane
portions, which in the linear regime appear as shown in the follow-
ing equations
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where a comma denotes a partial derivative with respect to the
coordinate indicated.

The stress–strain relation for kth composite layer follows
Hooke’s law in the local coordinate system is presented as [17]
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¼ Qe: ð5Þ

In Eq. (5), Q is the reduced stiffness matrix in a lamina and results
from the transformation of matrices from the nominal direction to
the local coordinate system. The transformation is associated to
the fibre orientation within the plane of the laminate. Although
function arguments were not included in Eq. (5) – in order to sim-
plify the notation, the same simplification is adopted in other equa-
tions – it is important to point out that the terms of the reduced
stiffness matrix are not constant, they are, in general, functions of
Cartesian coordinates x and y. Here, a linear variation of the fibre
angle is adopted, as in [18,19] and as shown in Fig. 1. Hence, the ref-
erence path can be defined by parameters T0, the fibre orientation
angle at the origin, and T1, which denotes the fibre orientation angle
at the edge of each ply

hðxÞ ¼ 2ðT1 � T0Þ
a

j x j þT0: ð6Þ

Therefore, the reduced stiffness matrix, which relates stresses and
strains [14], is a function of x, in this paper.

The equation of motion is obtained by applying the principle of
virtual work
dWin þ dWext þ dWv ¼ 0; ð7Þ

where dWin, dWext, and dWV are the virtual work of internal, external
and inertia forces and are defined as

dWin¼�
Z

V
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