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a b s t r a c t

This study presents mean-field based micromechanics models to predict the effective thermoelastic
properties, namely, elasticities, thermal expansions and heat capacity, of thermoelastic composite
materials with temperature-dependent constituents under finite temperature changes and small strain
assumptions. First, the Helmholtz potential density for small strain finite thermoelasticity has been
presented. The fundamental solution based on Green’s function of elasticity problem has been used to
derive the general expressions for the elastic and thermal strains concentration tensors with tempera-
ture-dependent material properties. A family of mean-field based micromechanics models (multi-site
Eshelby dilute model, Mori–Tanaka model and self-consistent model) has been presented. The models
are general enough to account for the morphology and topology textures of the microstructure of a ther-
moelastic composite. Numerical examples based on the multi-site Mori–Tanaka model are used to quan-
tify the differences of the effective properties based on the small strain finite thermoelasticity in
comparison to the linear thermoelasticity. The predictions of the multi-site Mori–Tanaka micromechan-
ics model are also compared to those of the VAMUCH, a finite element based micromechanics model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many engineering applications, materials are often suggested
to thermo-mechanical loading. In thermoelastic composite materi-
als, significant thermal stresses can arise due to the mismatch in
the coefficient of thermal expansions (CTEs) of the constituents,
affecting their global performances. The use of composite materials
in engineering structural components requires understanding the
variations in the field variables (e.g., stress, strain, temperature,
to name a few), both at the micro- and macro scales. To study
the thermomechanical behavior of composite materials, the
so-called linear thermoelasticity which, in addition to the temper-
ature-independence, assumes that both the strains and the tem-
perature relative variations are small, is often used. The small
temperature relative variations implies that the temperature
increment is small relative to the initial (reference) absolute tem-
perature, T0. If the current temperature is T, the linear thermoelas-
ticity requires ðT � T0Þ=T0 to be of the order of the elastic strain
which is in the order of 1% or smaller for it to be small. These

assumptions all together make the linear thermoelasticity theory
highly constraining for engineering applications where the strain
is small but the temperature relative variations are large and the
material properties are temperature-dependent, see [1].

As, it is well stressed in [2], many engineering systems are
designed to support significant thermal perturbations of hundreds
or even thousands of degrees such as space shuttle thermal protec-
tion panels, gas turbine blades, car and airplane heat exchangers, to
name a few. Since the CTEs for hard solids (e.g., diamonds, invar,
silicon) and many metals and their alloys (e.g., steel, aluminium,
copper) are in the order of 10�6=

�C and 10�5=
�C, respectively, the

strains arise in most engineering materials can still be reasonably
assumed small even if the temperature variations are large. It is
therefore obvious, for practical reasons, to abandon the small ther-
mal perturbations and temperature independence of the material
properties assumptions without violating the small strain
assumption.

Different types of mean-field based micromechanics
approaches have been proposed to predict the effective elastic
and/or thermal properties of composite materials. The self-consis-
tent approach [3], the generalized self-consistent scheme [4], the
Mori–Tanaka model [5], the differential method [6] are some
examples. Fundamentals of these micromechanics models can be
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found, for e.g., in the monograph [7]. Micromechanics modeling of
the thermoelastic behavior of composite materials is usually
addressed using the linear thermoelasticity, see, for e.g., [8–11]
and references cited therein. The case of composites with temper-
ature-dependent constituents properties has been less investi-
gated. As it has been said before, the two assumptions of the
linear thermoelasticity, namely, the small temperature variations
and temperature-independence of the material properties, are
too restrictive to be useful for many practical engineering applica-
tions. Hence, in the vein of the work reported in [2], the objective
of this work is to relax these two assumptions by extending the
multi-site mean-field based micromechanics model presented in
[11] to thermoelastic composite materials made of temperature-
dependent constituents and subject to finite temperature changes.

The multi-site mean-field based micromechanics model
reported in [11] is versatile enough to handle relatively complex
microstructures. It is able to take into account the morphology
and topology textures of the reinforcements. Hence, its extension
for thermoelastic composite materials made of temperature-
dependent constituents and subject to finite temperature changes
may be useful for handling particle, short fibers and long fibers
reinforced thermoelastic composite materials in practical engi-
neering material systems. This paper is organized as follows. The
small strain finite thermoelasticity framework is presented in
Section 2 where the terminology and notation as well as the
expressions for the Helmholtz potential of a homogeneous thermo-
elastic material are given. The localization relations combined with
the local Helmholtz potential give the macroscopic Helmholtz
potential of a heterogeneous thermoelastic material. The effective
thermoelastic properties are then deduced from the macroscopic
Helmholtz potential. Section 3 presents the integral equations
and the explicit expressions for the elastic and thermal strains con-
centration tensors in the case of the multi-site micromechanics for
small strain finite thermoelasticity. To validate the proposed
mean-field based micromechanics model, Section 4 presents the
variational asymptotic method for unit-cell homogenization
(VAMUCH), a finite element based micromechanics model, see
[2,12], for the small strain finite thermoelasticity. Numerical exam-
ples are given in Section 5 to quantify the difference of the results
based on the small strain finite thermoelasticity in comparison to
the linear thermoelasticity. A summary of the research findings is
given in Section 6.

2. Fundamentals of micromechanics for small strain finite
thermoelasticity

2.1. Terminology and notation

The material thermoelastic properties of interest in this study
are the isothermal stiffness tensor, L, the thermal expansion tensor,
a, and the heat capacity per unit of volume at constant strain, C�.
These properties are defined as follows

LðTÞ � @r
@�

� �
T
; ð1Þ

aðr; TÞ � @�
@T

� �
r
; ð2Þ

C�ð�; TÞ � T
@d
@T

� �
�
: ð3Þ

In the above definitions, the symbol, �, denotes equality by
definition, r is the stress tensor, � is the strain tensor, T is the abso-
lute temperature, and g is the entropy. A property, P, will be
denoted by either Pð�; TÞ or Pðr; TÞ. P0 is the value of P in the refer-
ence state, which is assumed here to be the natural state
(T ¼ T0; � ¼ 0;r ¼ 0). The thermal expansion defined in Eq. (2) is

in line with thermodynamic conventions. Usually within the small
strain thermoelasticity, two alternative measures are used: the
instantaneous or tangent thermal expansion, atanðTÞ, defined by

atanðTÞ � aðr ¼ 0; TÞ; ð4Þ

and the secant thermal expansion, asecðTÞ, defined by

asecðTÞ �
1

T � T0

Z T

T0

aðr ¼ 0; mÞdm ¼ 1
T � T0

Z T

T0

atanðmÞdm; ð5Þ

where T0 is the reference (initial) temperature. atanðTÞ and asecðTÞ
are the free thermal expansions, i.e. thermal expansions under zero
stress conditions.

In what follows, the dot ‘‘�’’ denotes the dot product between
second-order tenors, the colon ‘‘:’’ denotes the double dot product
between fourth-order tensor and second (or fourth)-order tensor
and h ¼ T � T0 denotes the temperature perturbation.

2.2. Helmholtz potential of a homogeneous thermoelastic material

The expression for the Helmholtz potential density, f ð�; TÞ, of a
homogeneous thermoelastic material under small strain and finite
thermal perturbation assumptions is given in [13] as follows

f ð�; TÞ ¼ 1
2
� � LðTÞ : �þ kðTÞ � �

�
Z T

T0

Z f

T0

C�ð� ¼ 0; mÞ
m

dm
� �

df� g0 T � T0ð Þ þ f0; ð6Þ

where

kðTÞ ¼ �LðTÞ :

Z T

T0
atanðmÞdm ¼ �LðTÞ : asecðTÞh: ð7Þ

The state equations corresponding to this potential, read

rð�; TÞ ¼ @f
@�
ð�; TÞ ¼ LðTÞ : �þ kðTÞ; ð8Þ

gð�; TÞ ¼ � @f
@T
ð�; TÞ ¼ �1

2
� � dL

dT
: �� dk

dT
� �

þ
Z T

T0

C�ð� ¼ 0; mÞ
m

dmþ g0; ð9Þ

C�ð�; TÞ ¼ �T
@2f

@T2 ð�; TÞ

¼ C�ð� ¼ 0; TÞ � T
1
2
� � d

2L
dT2 : �þ d2k

dT2 � �
 !

: ð10Þ

2.3. Localization relations

Representative volume element (RVE) under controlled
macroscopic (average) strain, ��, and temperature, T, is considered.
The RVE consists of reinforcements embedded in a continuous
material. The domain of the RVE is denoted by V. The localization
relations or obtained by solving the following linear elasticity
problem, PðL; k; ��;VÞ, defined as: given ðL; k; ��;VÞ find ðu; �;rÞ such
that

divr ¼ 0 in V ; ð11aÞ
r ¼ L : �þ k; in V ; ð11bÞ

� ¼ 1
2

graduþ graduð Þ>
h i

in V ; ð11cÞ

u ¼ ��x on @V ; ð11dÞ

where div and grad are the divergence and the gradient operators,
respectively; > is transposition; both L and k are functions of
the position, x, and the temperature, T, whereas �� is position-
independent. It is known that the average of � over V is equal to ��,
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