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Given the high surface to volume ratio, the nonlinear forced vibration behavior of third-order shear
deformable nanobeams in the presence of the both effects of surface stress and that of surface inertia
is investigated. Gurtin-Murdoch elasticity theory is utilized within the framework of third-order shear
deformation beam theory to develop a novel non-classical beam model to incorporate surface effects into
the forced vibration analysis of nanobeams. A cubic variation through the thickness of nanobeam is con-
sidered for the normal stress component of the bulk in order to satisfy the surface equilibrium equations.
Hamilton’s principle is used to derive size-dependent nonlinear governing differential equations of
motion. The equations are solved numerically using generalized differential quadrature method with
an iterative algorithm on the basis of shifted Chebyshev-Gauss-Lobatto grid points. Subsequently, based
on the Galerkin’s technique, the set of nonlinear partial differential equations are reduced into a time-
varying set of ordinary differential equations of Duffing type. At the end, the pseudo arc-length method
is employed to solve the set of nonlinear equations of the time domain. It is observed that by increasing
the beam thickness, surface effects on the nonlinear forced vibration behavior of nanobeam diminish

which leads to increasing the deviation from the linear response.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The investigations about mechanical characteristics of micro-
and nano-sized structures such as nanobeams are major topic of
current interest by researchers. Nowadays, beam structures are
widely used in various systems at micro and nano-scale [1-6].
Time-dependent external forces are usual in dynamic systems that
cause to the forced vibration in which the amplitude of system
depends on the frequency ratio. Moreover, it has been experimen-
tally indicated that the behaviors of structures at micron and sub-
micron scales are size-dependent [7-9]. The classical continuum
mechanics does not have the capability to take size effects into
account, so in order to interpret the size-dependent responses of
nanostructures, different non-classical continuum theories have
been introduced and employed during past years [10-21].

One of the main factors in size-dependency of nanoscale behav-
iors is surface effect. Because of the high ratio of surface area to
bulk volume, the surface of nanostructures has a substantial
influence on the mechanical characteristics. Gurtin and Murdoch
[22,23] developed a theoretical framework based on the
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continuum mechanics including surface effects which has an
excellent capability to incorporate the surface effects into the
mechanical response of nanostructures. According to this theory,
the surface can be actually modeled as an elastic membrane with-
out thickness which is perfectly bonded to the bulk of structure.
Many efforts have been made to consider surface effects on differ-
ent mechanical responses of nanostructures based on Gurtin-Mur-
doch surface elasticity theory.

Li et al. [24] studied the influence of surface effect on stress con-
centration around a spherical cavity in a linearly isotropic elastic
medium on the basis of continuum surface elasticity. Mogilevskaya
et al. [25] considered a two-dimensional problem of multiple inter-
acting circular nano-inhomogeneities and nano-pores based on
Gurtin-Murdoch model. Luo and Wang [26] investigated the elas-
tic field of an elliptic nano inhomogeneity embedded in an infinite
matrix under anti-plane shear. The interface stress effects of the
nano inhomogeneity were accounted for with Gurtin-Murdoch
model. Gordeliy et al. [27] analyzed a two-dimensional, transient,
uncoupled thermoelastic problem of an infinite medium with a cir-
cular nano-scale cavity using Gurtin-Murdoch elasticity theory.
Zhao and Rajapakse [28] applied the Gurtin-Murdoch continuum
model accounting for surface energy effects on the elastic field of
an isotropic elastic layer bonded to a rigid base. Song and Huang
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[29] applied the incremental deformation theory to study the sur-
face stress effects upon the bending behaviors of nanowires on the
basis of Gurtin-Murdoch elasticity theory. Mogilevskaya et al. [30]
studied the effects of surface elasticity and surface tension on the
transverse overall behavior of unidirectional nanoscale fiber-rein-
forced composites. They regarded the interfaces between the
nano-fibers and the matrix as material surfaces described by the
Gurtin-Murdoch model. Ansari and Sahmani [31] proposed a
non-classical solution to analyze the bending and buckling
responses of nanobeams including surface stress effect. They
implemented the Gurtin-Murdoch elasticity theory into the vari-
ous classical beam theories. Also, Ansari and Sahmani [32] investi-
gated the free vibration characteristics of nanoplates incorporating
the effect of surface stress using surface continuum elasticity.

To mention some more recent studies, Zhao and Rajapakse [33]
considered the general three-dimensional asymmetric problem for
an elastic layer of nanoscale thickness that is bonded to a rigid sub-
strate and subjected to tangential loading at the surface using Gur-
tin-Murdoch surface elasticity. Ansari et al. [34] performed a
numerical analysis on the postbuckling response of nanobeams
with the consideration of the surface stress effect. They applied
the Gurtin—-Murdoch elasticity theory to the classical Euler-Ber-
noulli beam theory to develop non-classical beam model. Also,
they conducted the same attempt for Timoshenko nanobeams
[35]. Shaat et al. [36] developed a new Kirchhoff plate model using
a modified couple-stress theory to investigate the bending behav-
ior of nanoplates. They used the surface elasticity theory of Gurtin-
Murdoch to model the surface energy effects into the framework of
the modified couple stress theory of elasticity.

In the present investigation, the nonlinear forced vibration
response of third-order shear deformable nanobeams is predicted
in the presence of surface effects. Gurtin-Murdoch continuum
elasticity is applied to the classical third-order shear deformation
beam theory to develop size-dependent beam model. In order to
satisfy the balance conditions on the surfaces of nanobeam, it is
assumed that the normal stress component of the bulk is distrib-
uted cubically through the thickness. After that, the variational
technique on the basis of Hamilton’s principle is utilized to derive
non-classical governing differential equations of motion and asso-
ciated boundary conditions. Generalized differential quadrature
(GDQ) method with an iterative algorithm on the basis of shifted
Chebyshev-Gauss-Lobatto grid points is then employed to discret-
ize governing equations. Galerkin’s approach is used to reduce the
set of nonlinear equations into a time-varying set of ordinary dif-
ferential equations of Duffing type.

2. Mathematical formulations

Among various types of the classical beam theory, in the third-
order shear deformation beam theory, there is no shear correction
factor to estimate the distribution of shear strain across beam thick-
ness. In this theory, itis assumed that the transverse shear strains are
assumed to be distributed parabolically through the beam thickness
as shownin Fig. 1. According to this type of beam theory, the compo-
nents of displacement vector for an arbitrary point can be defined as

u, =0, u,=W(xt) (1)

in which U(x,t), W(x,t) and ¥(x,t) represent, respectively, the axial
displacement of the center of sections, the lateral deflection of the
beam, and the rotation angle of the cross section with respect to
the vertical direction.

In the current study, it is assumed that the slops in the beam
after deformation are very small. Therefore, the strains of a
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Fig. 1. Schematic view of a third-order shear deformable nanobeam with the
kinematic parameters and coordinate system.

third-order shear deformable nanobeam can be approximated by
the von-Karman relation as
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On the basis of the linear elasticity, the non-zero stress compo-
nents for the nanobeam can be introduced as

Oxx = (A+21) 8U+ ov_4z @+7€)2W Jr1 w ’ (3a)
w K ox 3> ox2 2\ ox
4z ow
=] (1 =30) (%) .
where 2 = 55— and p = 5. Also, E and v denote the Young's

modulus and Poisson’s ratio, respectively.

Based on the Gurtin-Murdoch elasticity theory, the following
general and simple expressions for surface stress—strain relation
can be defined as [22,23]

O = TsOup + (Ts + As)8y0ap + 2(fhs — Ts)Eap + Tslly (4a)
05, =Tl (4b)

in which /s and p are the surface Lame constants and 7 is the resid-
ual surface stress under unstrained conditions.

Now, by using the above equations, the non-zero components of
surface stress can be obtained for a third-order shear deformable
nanobeam as
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