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a b s t r a c t

In this paper, three-dimensional elastic deformation of isotropic functionally graded plates subjected to
point loading is investigated using a combination of analytical and computational means. The analytical
approach is based on the displacement functions method, while numerical modeling, which requires high
accuracy in the representation of the point loading, uses GALERKIN type finite element method. Three dif-
ferent plate geometries are examined for validation purposes, and the difficulties associated with an opti-
mum choice of the element size are discussed. It is shown that by using a posteriori error estimation
based on the equivalent stress measure accurate results can be obtained even in the neighborhood of
the point loading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of functionally graded material (FGM) is currently
actively explored in a variety of engineering and biomedical appli-
cations where conventional materials can no longer meet
increased expectations in terms of performance and structural
integrity. FGM refers to advanced composite materials with grad-
ual compositional variation of the constituents from one surface
of the material to the other, which results in a continuous variation
of material properties. A comprehensive review of the principal
development in the modeling of functionally graded materials
and structures covering homogenization of particulate FGMs, heat
transfer, statics, dynamics, stability fracture, testing and design is
given by Birman and Byrd [3].

The study of a structure’s response to point loading is an impor-
tant step towards investigation of more complex loading problems
including indentation and impact, which requires an understand-
ing of both the local and global response of the material and struc-
ture. Much research concentrated on the development of
analytical/numerical solutions for isotropic and anisotropic func-
tionally graded half-planes and half-spaces with power-law, expo-
nential and linear variation of the elastic constants with respect to
depth, see the survey in [23]. By neglecting boundary dimensions
and curvatures, these studies have restricted their interest to the

near-field behavior in order to provide a valuable insight into the
local stress distribution near the surface of FGMs.

Despite the fact that structures such as beams, plates and shells
are frequently subjected to concentrated loads under working or
experimental conditions, elastic deformation of functionally
graded structures under point loading has received considerably
less attention in the literature. Whilst a number of plate theories
for functionally graded plates have been proposed (see e.g., [3]),
numerical examples that accompany them are usually restricted
to one-term sinusoidal loading and uniformly distributed loading.

A solution to the problem of a concentrated line force acting in
the interior of an infinite plate was developed by Spencer [19]. The
plate was assumed to be of arbitrary thickness, isotropic and inho-
mogeneous, with the elastic moduli being functions, not necessar-
ily continuous, of the through-thickness coordinate. The
mechanical properties of the plate are not necessarily symmetric
about the mid-surface. The solution, based on the classical solution
for a concentrated force in a thin elastic plate, was extended to give
exact closed form solutions for the displacement and stress in the
thick inhomogeneous plate.

Guo et al. [8] examined the interface crack problem for an infi-
nite plate of finite thickness with functionally graded coating sub-
jected to a concentrated force. An exponential variation of the
shear modulus in the coating was assumed.

More recently, Woodward and Kashtalyan [24] investigated the
elastic deformation of rectangular sandwich panels with a graded
core subjected to various types of localized loads including patch,
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line, and point load. The elastic behavior of functionally graded
rectangular plates under patch load was also studied in Woodward
and Kashtalyan [25]. Patches of three different sizes were consid-
ered: full-size patch (i.e., uniformly distributed loading), large cen-
tralized patch, and small centralized patch. Analytical modeling
was based on 3-D elasticity solution for stress and displacement
fields in functionally graded plates subjected to a one-term
sinusoidal loading recently developed by Kashtalyan [13], while
finite element modeling was performed in ABAQUS with user
implemented graded elements. Agreement between the 3-D
elasticity solution and finite element model was excellent. It is
worth noting that while increasing the number of terms used in
the FOURIER representation of patch load type can be seen to give
greater accuracy at the plate center, an overshoot in the normal
stress is observed in locations of patch load application as the
solution tries to capture a step change in load with number of
sinusoidal terms. This is known as the GIBBS’s phenomenon ([5,6]).

Singh and Shukla [18] performed a nonlinear flexural analysis of
simply supported and clamped functionally graded plates under
line and point loadings. They employed the LEVINSON shear deforma-
tion theory and multiquadratic radial basis functions methods to
study the effect of stiffness gradient and boundary conditions on
central deflection and in-plane stresses in the plates with power-
law variation of YOUNG’s modulus through the thickness of the
plate.

Sun and Luo [21,20,22] investigated wave propagation and
transient response of functionally graded plates under a point
impact loading, while Doddamani et al. [4] studied the behavior
of sandwich beams with functionally graded rubber under three
point bending by using a combination of experimental and numer-
ical techniques.

In this paper, the three-dimensional elastic deformation of an
FGM rectangular plate subjected to point load is investigated by
a combination of analytical and computational tools.

2. Analytical modeling

2.1. Problem formulation

Consider a rectangular plate of length a, width b and thickness
h. The plate is a three-dimensional continuous body, B0, which is
referred to the material configuration expressed in a CARTESIan co-
ordinate system ðX1;X2;X3Þ, so that 0 6 X1 6 a;0 6 X2 6 b;0 6
X3 6 h, cf., Fig. 1.

The material of the FGM plate is assumed to be isotropic inho-
mogeneous, with an exponential variation of the shear modulus G
with the thickness co-ordinate X3 in the form:

GðX3Þ ¼ G1 exp c
X3

h
� 1

� �� �
;

c ¼ ln
G1

G0

� �
; m ¼ const::

ð1Þ

Here G0 is the value of the shear modulus at the bottom surface of
the plate, X3 ¼ 0;G1 is the value of the shear modulus at the top sur-
face of the plate, X3 ¼ h, and c is the inhomogeneity parameter. The
POISSON’s ratio is assumed to be constant.

If the displacement formulation is used, the three-dimensional
displacement field in the plate is governed by the following three
equilibrium equations in terms of displacements ui:

GDu1 þ
G

1� 2m
@ekk

@X1
þ @u1

@X3
þ @u3

@X1

� �
dG
dX3
¼ 0;

GDu2 þ
G

1� 2m
@ekk

@X2
þ @u2

@X3
þ @u3

@X2

� �
dG
dX3
¼ 0;

GDu3 þ
G

1� 2m
@ekk

@X3
þ ekk

d
dX3

2Gm
1� 2m

� �
þ 2

@u3

@X3

dG
dX3
¼ 0;

ð2Þ

where and henceforth the summation convention from one to three

in repeated indices is applied and the LAPLACEan operator D ¼ @2

@Xi@Xi
as

well as the linearized symmetric strains eij ¼
@uði
@XjÞ
¼ 1

2
@ui
@Xj
þ @uj

@Xi

� �
are

employed in the usual way. Hence ekk is the volumetric strain or
dilatation. The above equations are analogous to the NAVIER-LAMé
equations for homogeneous isotropic materials. In Eq. (2) for the
isotropic heterogeneous material or in the NAVIER-LAMé equations
for the isotropic homogeneous case, the same constitutive relation,
i.e., HOOKE’s law defines the CAUCHY stress tensor:

rij ¼
2Gm

1� 2m
ekkdij þ 2Geij: ð3Þ

The plate is subjected to a concentrated (point) force, P, applied at
the center of its top surface, ða=2; b=2; hÞ, while the bottom surface
remains free, cf., Fig. 1. We will treat the point force as a particular
case of distributed transverse loading:

QðX1;X2Þ ¼ PdðX1 � X0
1ÞdðX2 � X0

2Þ; ð4Þ
where dðX1 � X0

1Þ; dðX2 � X0
2Þ are Delta-functions such that at

X1 ¼ X0
1 ¼ a=2;X2 ¼ X0

2 ¼ b=2 they be of value one and vanish else-
where. Then the boundary conditions at the top and bottom sur-
faces of the plate are

X3 ¼ h : r33 ¼ QðX1;X2Þ;r13 ¼ r23 ¼ 0;
X3 ¼ 0 : r33 ¼ r13 ¼ r23 ¼ 0:

ð5Þ

At the edges of the plate, NAVIER-type boundary conditions are pre-
scribed so that:

X1 ¼ 0;X1 ¼ a : r11 ¼ 0;u2 ¼ u3 ¼ 0;
X2 ¼ 0;X2 ¼ b : r22 ¼ 0;u1 ¼ u3 ¼ 0:

ð6Þ

These boundary conditions are representative of roller supports and
analogous to simply supported edges used in plate theories.

In order to find the analytical solution to Eq. (2) subject to
boundary conditions Eqs. (5), (6), we employ PLEVAKO’s displace-
ment potential functions L ¼ LðXiÞ and N ¼ NðXiÞ. The displacement
can be represented in terms of the potential functions as:

u1 ¼ �
1

2G
mD� @2

@X2
3

 !
@L
@X1
þ @N
@X2

;

u2 ¼ �
1

2G
mD� @2

@X2
3

 !
@L
@X2
þ @N
@X1

;

ð7Þ

Fig. 1. Geometry and loading of the three-dimensional continuum body B0.
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