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a b s t r a c t

Different possible mechanisms of non-Newtonian behavior of polymeric and multi-component materials
in shearing are discussed. There are two main types of the non-Newtonian media: fluids with the max-
imal (zero-shear-rate) Newtonian viscosity and yielding visco-plastic materials. Numerous intermediate
and superimposing situations can also exist. The main concept of the non-Newtonian viscosity of such
elastic fluids as polymer melts is based on definition of their ‘‘structure’’ as the set of relaxation modes
modified by deformation. Shear-induced relaxation spectrum transformations lead to non-linearity, for-
mation of anisotropic structures, and changes in the macromolecule entanglement topology. A general
approach to quantitative description of non-Newtonian flow of polymer melts is achieved if to assume
that the dominant reason of non-linear flow properties is molecular-weight distribution of polydisperse
polymers with continuous flow-to rubbery transition from the side of slow relaxation modes with
increasing shear rate.

The non-Newtonian viscosity of such multi-component systems as numerous suspensions, emulsions,
and mixtures is characterized by transition from the flow curves with the zero-shear-rate viscosity to the
yield-type behavior. The latter is the direct evidence of a spatial structure which changes in shearing. The
yield stress value can be rigorously determined only for rigid structures. For soft matters, the structural
breakdown/buildup processes are a time dependent (thixotropic/rheopectic) phenomenon, and the con-
cept of yielding becomes uncertain. Nature of structures in various multi-component materials can be
very different but just their existence determines a possibility of non-linear effects in shearing. A special
type of the non-Newtonian flow is instability and inhomogeneity of a stream. Different forms of these
phenomena (shear banding, layered flow, surface distortions, periodic oscillations, concentration separa-
tion, and movement of large structural aggregates) are known. In such situations, the ‘‘measured’’ non-
Newtonian viscosity can appear an artifact depending on the size factor.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of non-Newtonian flow of polymer melts and mul-
ti-component fluids (polymeric and colloid solutions as well as
other dispersions) is a cornerstone of rheology to the same extent
as the linear Newton law and the Navier–Stokes equations as its
consequence are the base of the dynamics of viscous fluids.
Meanwhile, the overwhelming majority of publications devoted
to the problem of non-Newtonian flow consider a concept of
some ‘‘structure’’ of a fluid as a key to various approximations of
the non-Newtonian phenomena. However the very mechanism
(or mechanisms) of the non-Newtonian shear viscosity remains
disputable and requires more definite answers than intuitive refer-
ences to the ‘‘structure’’ of polymeric or colloid multi-component
fluids.

The first rheological papers were devoted to visco-plastic media
which definitely have inherent structure formed by a disperse
phase [1–3]. The same ‘‘structure’’ concept was presumed in
discussing viscous properties of colloid systems and their non-
Newtonian viscosity was initially called ‘‘Structurviskosität‘‘ [4,5].
Then polymer solutions treated like ‘‘colloid systems’’ were
considered as structured fluids as well [6]. However majority of
flexible-chain polymer melts and polymer solutions are definitely
amorphous structureless fluids [7]. It was experimentally proven
that ‘‘in amorphous state the conformation of the polymer molecule
is undistinguishable from that in h solvent and that the Debye scatter-
ing function is valid . . . for unperturbed chains . . . as low as 10 A’’ [8].
Surely, numerous types of specific structure formations are possi-
ble. The most evident cases are LC polymer solutions, clustering
in dilute polyethylene oxide solutions [9,10], and polyelectrolyte
gel formation, e.g. in poly(acrylic acid) solutions [11]. These
systems demonstrate various non-Newtonian effects and the
mechanisms of these effects can be different depending on a fluid
microstructure. However below (in Section 2), we will discuss more
simple model case of structureless polymeric fluids. For such fluids,
it is necessary to search for the understanding of non-Newtonian
behavior not directly related to their physical microstructure.

These preliminary arguments allows us to distinguish two prin-
ciple schemes of the non-Newtonian behavior shown in Fig. 1.1:
visco-plastic behavior with the yield stress, sY, and a full flow curve
with maximal or upper (zero-shear-rate) Newtonian viscosity, g0.
Formally, these schemes cover various main possible cases of stea-
dy state shear flow.

This paper is devoted to reviewing different possible basic situ-
ations in manifestation of the non-Newtonian steady state shear
viscosity and discussion of possible mechanisms standing behind
this phenomenon.

2. Flow curves of visco-elastic fluids

2.1. Viscosity and viscoelasticity

It is reasonable to suppose that flow curves observed for poly-
meric fluids are inherently related to their elasticity and reflect

peculiarity of their relaxation properties. This might be also true
for elastic colloidal systems, such as micellar colloids and
emulsions.

The first analysis of the correlation between viscosity and visco-
elasticity was carried out by Oldroyd [12] who showed that the
flow induced deformation of liquid droplets dispersed in another
fluid leads to visco-elastic effects due to the action of surface
forces. Much later, Kroy et al. came to the so-called ‘‘similarity
rule’’ [13]. According to their rigorous fluid dynamic argumenta-
tion, the shear rate (non-linear) dependence of apparent viscosity,
gð _cÞ, is similar to an expression for the real part of a frequency
dependent of the complex viscosity, g0ðxÞ:

g0ðxÞ ffi gð _cÞ ð1Þ

Besides, the following relationship was also obtained

g0ðxÞ ffi r11 � r22

2x
; ð2Þ

where (r11 � r22) is the first normal stress difference.
The last one was also obtained earlier in [14] from the different

argumentation.
Similar relationships also appeared in various phenomenologi-

cal theories of visco-elastic media (see, e.g. [15,16]).
The most frequently cited correlation between the apparent vis-

cosity and the complex dynamic viscosity was formulated in [17]
as the well known empirical Cox–Merz rule:

gð _cÞ ¼ jg�jð _cÞ ð3Þ

which is close to Eq. (1).
There is a lot of experimental data obtained for polymer solu-

tions and melts which confirm the above written relationships
(see for example [18–20,59–67,101–109,139–147,10,11,21,22]
among many others). An attempt to give the molecular model
explanation of this empirical rule is also known [23]. The latest
molecular approach to the understanding of the Cox–Merz rule
for polydisperse polymers was proposed in [24].

So, deformation of dispersed particles (including macromole-
cules) in shear flows simultaneously results in both, non-Newto-
nian behavior and visco-elasticity regardless the physical
mechanism of elasticity, either it is surface properties or segmental
movement of chain macromolecules.

These similarities can be accepted as the starting point for
understanding the visco-elastic mechanism of the non-Newtonian
shear flow. The decrease in the apparent viscosity should be con-
sidered as a consequence of the changes in relaxation properties
of a fluid being a function of deformation rate. The decrease in
the non-Newtonian viscosity with increasing deformation rate re-
flects the degeneration of slow relaxation processes. As a result,
their input to viscous dissipation becomes lower along with the in-
crease in the deformation rate. It corresponds to the continuous
modification of a relaxation spectrum from the slow relaxation
modes side.

Then this mechanism of non-Newtonian behavior can be dis-
cussed in terms of a relaxation spectrum. In the frames of the gen-
eral viscoelasticity theory, the zero-shear-rate (linear) Newtonian
viscosity, g0, is expressed as the sum of dissipative losses in all
relaxation processes [25]:

g0 ¼
Z 1

0
hF0ðhÞdh ð4Þ

where F0(h) is a (linear) relaxation function directly related to a
relaxation spectrum.

In the transition to a non-linear region, F0(h) is modified by sup-
pression of slow relaxation modes. This conception was advanced
in [26,27] and is developed in the modern form in many publica-
tions by M. Wagner with coauthors (see the review [28]). The final
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Fig. 1.1. Flow curves of viso-plastic (left) and non-Newtonian (right) fluids.
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