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a b s t r a c t

High quality flow kinematics reconstruction from noisy and spatially scattered data requires the use of a
regularization technique. Enforcing incompressibility, we employ the recently proposed Tikhonov regu-
larization method combined with a high-order finite element approximation in its stream function for-
mulation. The method is applied to experimental particle tracking velocimetry data, obtained for an
incompressible polymer melt in a cross-slot channel. To overcome a potential regularization bias, where
the velocity changes rapidly over small distances, regularization is performed on the departure of the
velocity field from its Newtonian counterpart. It is compared with a more trivial approach, in which
the data are smoothed locally and the velocity gradient fields computed using finite differences. The
reconstructions are evaluated in terms of the quality of the streamlines and the velocity gradient histo-
ries. Regularization leads to significant noise reduction and to an improved utility of existing data for sub-
sequent applications as we demonstrate by analyzing the principal stress-difference obtained by
applying a constitutive equation to the reconstructed flow fields.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recent experimental and numerical investigations have re-
vealed that the dynamics of polymer chains in a mixed flow situa-
tion, in particular near a stagnation point, is far more complex than
the dynamics of molecules in simple homogeneous shear and uni-
axial stretching [1–9]. Within a viscoelastic polymeric liquid, the
chains are imposed to different strain histories at different dis-
tances from the stagnation point. A better understanding to assess
the performance of concentrated polymer solutions and melts in
complex flows, where a mixture of shear and elongational defor-
mation exists, can be fulfilled by accurately quantifying the flow
kinematics to subsequently characterize shear and elongational
properties of the fluid. With the flow kinematics at hand one can
assess the performance of constitutive equations in predicting
the stress field in mixed flows. A local fluid velocity is typically
measured using particle tracking velocimetry or laser Doppler
velocimetry. The accuracy of the constructed velocity field is an
essential prerequisite for a reliable characterization of the kine-
matics and even more so for the reliability of the time-dependent
information carrying the deformation history. The corresponding
procedure is unfortunately far from being straightforward, for

two reasons. First, the experimental complex flow data are usually
acquired from a limited number of locations in the domain and
contain undesired noise which can significantly alter the physical
interpretation [8,9]. Second, evaluating constitutive equations to
obtain the stress field from the experimental velocity data involves
gradients of the velocity field. Therefore, reconstructing an accu-
rate and complete velocity field from sparse and noisy data re-
mains an important task. The reconstruction of a global velocity
field and its gradients from noisy-scattered experimental data is
an ill-posed problem because the solution is very sensitive to the
presence of noise in the data. The solution of such a problem thus
requires regularization. The Tikhonov regularization combined
with high order finite element (FE) approximation had been pro-
posed recently [10,11] as a robust technique for the reconstruction
of full field flow kinematics from experimental velocity data. The
main innovation of this method compared to others is its ability
to reconstruct the variable and its derivative continuously over
the whole field of interest where only a few randomly distributed
values are available. The method was implemented and validated
against synthetic noisy scattered data for an Oldroyd-B model fluid
in a two dimensional (2D) complex flow situation. Within this ap-
proach the fluid incompressibility can be taken into account by
either adding an extra term to penalize departures from incom-
pressibility in the regularization procedure or by imposing it di-
rectly through a stream function formulation. We found that
implementing the stream function approach is more effective in
recovering the velocity information in a 2D incompressible flow
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situation [11]. It was elucidated that the best performance is
achieved for an interpolation method using third order continuous
Hermite FE shape functions, C3, regularized by minimization of a
norm of the velocity’s third derivative.

We have performed the necessary experiment on a commercial
viscoelastic liquid, a low density polyethylene melt, in an effec-
tively 2D channel flow. With the data at hand we are going to crit-
ically investigate the performance of the proposed algorithm when
for the first time applied to real experimental data. Section 2 de-
scribes the implementation of the Tikhonov regularization based
on the stream function approach and the third order continuous
Hermite FE approximation. Materials, methods and data acquisi-
tion is described in Section 3. The regularization method is applied
in Section 4 on experimentally measured particle tracking veloci-
metry data in a cross-slot channel. The regularization quality is
elucidated by using the regularized experimental flow kinematics
to calculate the predicted stress field using the eXtended Pom-
Pom (XPP) constitutive equation, which are then compared to the
experimentally measured stress field. Concluding remarks will be
offered in Section 5.

2. Tikhonov regularization

To obtain a continuous representation of a velocity field in 2D
which preserves incompressibility, the reconstructed field (uc,vc)
at any position r is expressed using the stream function-based fi-
nite element approximation [11]:

ucðrÞ ¼ ½N;yðrÞ�q; vcðrÞ ¼ �½N;xðrÞ�q; ð1Þ

where [N,y] and [N,x] are raw matrices containing the x, respectively
y derivative of the third order continuous Hermite FE shape func-
tions C3 [11] of the element containing r. The quantity q denotes
the column vector formed by the stream function nodal values.
From the experimentally measured velocity vector data, the un-
known nodal values q are obtained by minimizing a cost functional.
This functional v is formed by a weighted least squares term min-
imizing the departure of the reconstructed field from the data, plus
a regularization term penalizing the roughness of the velocity
gradient,
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Here uc
i ¼ ucðriÞ and vc

i ¼ vcðriÞ denote the calculated values and ûr
i

and v̂r
i are experimentally measured values of the velocity field at N

positions ri. The superscript r indicates that the measured values,
ûr
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i , respectively.

The prefactor k in Eq. (2) is the regularization parameter and
sets the relative importance of smoothness versus interpolation.
The norm k�k2 denotes the sum over all squared components; f (3)

is a tensor of rank 3 containing all third derivatives, and the
integrand of the regularization term, kf (3)uc(r)k2 and likewise
kf (3)vc(r)k2 read
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Substituting the finite element form of uc(r) and vc(r) given by Eqs.
(1) and (3) into Eq. (2), the vector of nodal values q is calculated by
minimizing Eq. (2), at a given regularization parameter, with re-
spect to q. From this vector, the complete velocity field components
can be reconstructed at any position (Eq. (1)).

Application to scattered synthetic velocity data of an incom-
pressible Oldroyd-B fluid with added random noise has shown that

this method results in an efficient removal of the noise and an
overall faithful reconstruction of the velocity field and velocity gra-
dients [10,11]. However, the use of a single regularization param-
eter optimized over the whole domain leads to a small but
systematic oversmoothing [11] at the corners of the channel,
where a steep variation of the velocity gradient occurs.

To potentially limit this effect, we here apply the regularization
procedure not directly to the velocity vector (u(r),v(r)) but to its
departure (Du(r),Dv(r)) from the velocity field expected for the
corresponding incompressible Newtonian fluid,

DuðrÞ ¼ uðrÞ � unewtðrÞ; DvðrÞ ¼ vðrÞ � vnewtðrÞ: ð4Þ

The Newtonian velocity field (unewt(r),vnewt(r)) can be generated for
the given cross-slot geometry and input flow rate using any com-
mercial finite element software and consequently be expressed in
the chosen stream function based finite element approximation as

unewtðrÞ ¼ ½N;yðrÞ�qnewt; vnewtðrÞ ¼ �½N;xðrÞ�qnewt: ð5Þ

Here qnewt regroups the nodal values for the corresponding Newto-
nian flow. Consequently, the unknown regularized departure from
the Newtonian field is then given as:

DucðrÞ ¼ ½N;yðrÞ�Dq; DvcðrÞ ¼ �½N;xðrÞ�Dq; ð6Þ

where Dq = q � qnewt is the difference in the stream function nodal
value vectors for the calculated and Newtonian flow fields. As pre-
viously, the unknown Dq = q � qnewt is obtained by minimizing
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Defining the vector Db = (DbuT DbvT)T with
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assembled matrix K = (KuT KvT)T with Ku
ij ¼ Nj;yðriÞ=ru

i and

Kv
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i and rewriting the regularization term asR
X½kf ð3ÞDucðrÞk2 þ kf ð3ÞDvcðrÞk2�d2r ¼ DqT R4Dq, Eq. (7) can be ex-

pressed in the following simple matrix form:

vðkÞ ¼ kKDq� Dbk2 þ kDqT R4Dq; ð8Þ

where R4, the global regularization matrix of order n = 4, has been
defined in [11]. The solution, at a given regularization parameter
k is obtained by minimizing Eq. (8) with respect to Dq, which leads
to [12]

Dqk ¼ ðKT Kþ kR4Þ�1KTDb: ð9Þ

As soon as the difference in the stream function nodal values Dqk is
known, the velocity field can be reconstructed at any position r
within the domain using

urec;k ¼ Nrec;yðDqk þ qnewtÞ; vrec;k ¼ �Nrec;xðDqk þ qnewtÞ; ð10Þ

where urec,k and vrec,k are the vectors of reconstructed velocity val-
ues at a given regularization parameter k and Nrec,y and Nrec,x stand
for the assembled matrices of the first derivatives of shape func-
tions corresponding to all wished new positions.

Therefore, by using this method with or without Newtonian
subtraction, not only a smooth velocity field can be reconstructed
but also calculation of the smooth gradient field is directly permis-
sible. To achieve, for example the @u/@x gradient field component
in the reconstructing space, it is enough to replace Nrec,y in Eq.
(10) by the matrix of the corresponding cross derivative of shape
functions, Nrec,yx.
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