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a b s t r a c t

Motivated by computing elastic properties of reinforced natural fibre composites, a multi-scale numerical
model, named ‘the Projected Fibre approach (PF)’, is proposed. It uses a specific finite element procedure
which is associated with a random distribution of short fibres. It takes into account of the geometry and
the mechanical properties of composite’s components. A microscopic truss finite element is used to
model the short fibre reinforcements. The corresponding degrees of freedom are projected on those of
the resin matrix. Numerical results of the elastic properties of a reinforced hemp fibre polypropylene
composite are compared to those obtained from the experiment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Natural fibres as reinforcement for composites with thermoplas-
tic matrices are currently exploited in place of glass and/or other
synthetic materials, particularly in non-structural applications.
Several application sectors become more and more interested by
a possible future use of bio-composites materials, especially those
reinforced with natural fibres (woven composites, randomly dis-
tributed fibre composites. . .). Among them, sectors of automotive,
construction, goods, biomedical and packaging seem to be the most
cited on these applications [1–6]. The main advantage of employing
natural fibres is that these are biodegradable and renewable, and
exhibit low cost, low density, high toughness and good thermal
resistance. Moreover polymer materials reinforced with natural
fibres (hemp, flax, sisal, wood-fibre, yute, alfa, miscanthus. . .) can
combine satisfactory mechanical properties with a low specific
mass. So far studies on the properties of natural fibres based com-
posites have been the subject of a large number of papers and
reviews, especially during the last decade [7]. Prediction of macro-
scopic properties of composite materials (Young’s modulus,
Poisson’s ratio, shear modulus, . . .) from those of components is
one of the main objectives of modelling. The mechanical behaviour
of such materials under loading derives from active mechanisms
inside their components and at the interfaces, as well as from the
arrangement of these components. The prediction of macroscopic

behaviour from these data uses complex operations of scale change
which represent the interaction phenomenon between compo-
nents. The micromechanical approaches are the first ones to be pro-
posed in the literature, for estimating elastic properties of short
fibre reinforced composites. We mention some models known from
the literature which are based, for most of them, on two basic
assumptions: the matrix and fibre are linearly elastic and a random
distribution of fibres. The simplest are the Voigt and Reuss bounds
[8] which allow a framework for effective properties of the equiva-
lent homogeneous material. Hashin and Shtrikman [9] proposed to
use a mixed formulation for estimating upper and lower bounds of
effective properties of a composite (matrix - inclusions). These
bounds are tighter than those of Voigt and Reuss. Kröner [10–12]
proposed a self-consistent model from the Eshelby’s solution [13]
of the problem of consistency in the inclusion. In this model, the
inclusion is placed in a medium having the sought effective proper-
ties. One of the most used model remains that proposed by Mori
and Tanaka in 1973 [14]. It has received wide attention for its sim-
plicity and easiness in applications [15–17]. It takes into account of
problem of inclusion of Eshelby, and it’s able to also take into
account a great number of micro-structural data, associated for
instance to the interaction between the reinforcements inside a
matrix, without having high computational cost. Use of numerical
methods to compute the elastic properties, particularly the finite
element analysis, is often devoted to composites with fibres having
well defined orientations (Unidirectional, Woven, etc. . .) [18,19],
but rarely for materials with randomly distributed short fibres.
Recently, Cunha et al. [20] proposed a numerical approach to simu-
late the crack behaviour of steel fibre reinforced composites (SFRC),
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using 3D discrete embedded elements for fibres representation. An
algorithm based on Monte Carlo method is used to simulate the
random fibre distribution over the matrix. Pan and Pelegri [21]
presented analytical and numerical tools using finite elements for
analysis and design of production grade random chopped fibre
composite material.

Motivated by computing the elastic properties of reinforced
short natural fibre composites, which requires relatively less com-
puting time, a multi-scale numerical model, named Projected Fibre
approach (PF), which uses a special finite element procedure
associated with a random distribution of short fibres, is proposed
in the present work. It takes into account of the geometry and
the mechanical properties of the composite’s components. A
microscopic truss element is used to model the short fibre rein-
forcements. The corresponding degrees of freedom are projected
on those of the resin matrix. Numerical results of the elastic prop-
erties of a reinforced hemp fibre polypropylene composite are
compared with those obtained experimentally.

2. The Projected Fibre (PF) approach

2.1. General aspects

The short fibre is considered as an inclusion which could be rep-
resented by a 1D truss finite element in a first step. The corre-
sponding stiffness matrix will be projected on that of a 2D finite
element associated to the resin space. The approach of Projected
Fibres, labelled PF, will use a local condensation of the fibre ele-
ment degrees of freedom. It may be considered as innovative
approach regarding the Mori–Tanaka approach, insofar as it cannot
be based on Eshelbi tensors or Euler angles to get the global
composite rigidity. The random aspect of the short fibres is repre-
sented by the corresponding positions of the truss finite elements.
The PF approach has the particularity to consider the elementary
short fibre as integrated part of another elementary set named
bio-composite, while it is merged inside a resin elementary space.
Several parameters may be studied in order to reach a competitive
composite. For instance, we refer to geometrical characteristics of
the short fibre after the injection process (ratio length/diameter,
fibre volume fraction, fibre directions), fibre and resin elastic
properties, etc...

2.2. Finite element formulation

2.2.1. 1D Linear truss fibre element
Modelling of one fibre reinforcement by a single discrete truss

elastic finite element, with a constant cross section, can be consid-
ered as a first hypothesis. This allows associating a fibre to one
small cylinder with an average aspect ratio L/D (Length/Diameter).
From mechanical point of view, the adopted 2-node fibre element
can support an axial load; it can be oriented in any direction within
a plane, and then is able to reproduce behaviour of both tensile and
compression. No bending load is considered and degrees of free-
dom are ‘‘translations’’ type defined by a linear approximation of
the displacement field u (Fig. 1) which will be detailed in this sec-
tion. As mentioned before, the cross-sectional dimensions and
elastic properties are constant along fibre’s length. The linear
approximation of global components of the displacement field u,
defined in the reference iso-parametric co-ordinate leads to:
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Cinematically, the displacement field u (Fig. 1) may be written as a
scalar product of director cosines vector hti and the global displace-
ment vector (U):
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A discrete representation of the following classical elementary
internal strain energy
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Ef, Af and lf are respectively the young modulus, the cross-section
area and the length of the fibre element. Inside injected samples,
the last geometric parameters are represented by microscopic
values which can be estimated by using Scanning Electronic
Microscope for instance.

2.2.2. Constant strain triangle resin element (CST)
The discrete formulation of the resin element is that of the clas-

sical CST (Constant Stain Triangle). It is based on linear Lagrange
interpolation (C� continuity) of the displacement field (U,V)
(Fig. 2) :
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Using the small strains hypothesis, the approximation of the
Lagrange deformation field leads to the displacement–strain matrix
[Br]:
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Fig. 1. Truss fibre element (2-node) with orientation a.
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