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a b s t r a c t

Non-recirculating and recirculating inertial flows of a viscoplastic fluid around a cylinder were studied
numerically. The Herschel–Bulkley constitutive equation was considered. The flow morphology, the
stress and pressure fields around the cylinder and the drag coefficient were determined over a wide range
of Reynolds and Oldroyd numbers. The opposing effects of inertia and yield stress on the yielded zones
and size of the vortices was demonstrated. Useful formulas in particular for the drag coefficient were also
established for engineering purposes. The influence of the power law index was also studied for both
shear-thinning and shear-thickening cases and this study revealed a complex behaviour. The position
and size of the rigid zones as a function of the power law index and Oldroyd number are represented
in different schemes.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many industrial systems such as mixers, exchangers or filtra-
tion systems involve flows around cylinders or piles of cylinders.
A wake, which may be permanent or non-stationary, can some-
times be observed appearing or developing behind these cylinders.
This study focuses on the case of viscoplastic fluids and stationary
flows. Such fluids are by definition materials that only flow when
the stresses applied to them are sufficient to overcome the interac-
tion forces holding them in equilibrium. Once the stress exceeds a
threshold s0, they are able to flow as a viscous fluid. Viscoplastic
fluids are very widely used in the industrial world and are found
in our daily environment. They include food fluids, petroleum flu-
ids, cements, geophysical fluids, cosmetics, etc. Their flow is gener-
ally governed not only by inertia and viscosity effects, but also by
the yield stress and by the shear-thinning index.

Many numerical [1–10] and experimental [11–13] studies have
been performed to examine the flows of Newtonian fluids around
cylinders in infinite or confined domains [14–18]. Power-law fluids
have also been examined in many exclusively numerical studies
[19–23].

In cases involving viscoplastic fluids with inertia, Mossaz et al.
[24] showed the influence of the Reynolds and Oldroyd numbers
and power law index on the criteria governing the appearance of
the different regimes such as non-recirculating, recirculating and

non-stationary flows with vortex shedding. Refs. [25–27] give de-
tails and definitions of the various types of regimes for Newtonian
fluids. For cases involving negligible Reynolds numbers, a complete
examination can be found in a study performed by Tokpavi et al.
[28] and in an article by Putz and Frigaard [29].

While the criteria governing the appearance of the various
regimes have recently been determined [24], the characteristics
of each regime need to be studied. This study looks at stationary
non-recirculating and recirculating regimes.

The study is divided into three parts in order to show the influ-
ence of the input parameters on the flow morphology, the distribu-
tion of pressures and stresses on the cylinder, and the change in
drag coefficient and characteristic lengths:

� The first part demonstrates the successive influence of the
Reynolds number, Oldroyd number and power law index on
the location of yielded areas and on the lengths that characterise
the flow.
� The second part concentrates on changes in the stresses and

pressures acting on the cylinder while examining in succession
the influence of the three input parameters.
� Finally, the third part demonstrates the successive influence of

these three parameters on the drag coefficient.

2. Theory

The problem considered is that of a two-dimensional (2D) flow of
an incompressible viscoplastic fluid around a cylinder of diameter
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D. The fluid is assumed to extend to infinity. The velocity of the fluid
at infinity is designated V1 and it is assumed that the fluid sticks to
the cylinder wall. The dimensions are represented on Fig. 1.

The mass and momentum conservation equations for this fluid
may be written as follows:

Mass conservation : r � u ¼ 0 ð1Þ

Momentum conservation : q
@u
@t
þ u � ru

� �
�r � r ¼ 0 ð2Þ

with : r ¼ �pI þ s ð3Þ

where q is the density, u the velocity vector with components Ux

and Uy, p the pressure, I the indentity matrix, r the stress tensor
and s is its deviatoric part.

Viscoplastic fluids modelled by the Herschel–Bulkley law are
considered.

Therefore:

s ¼ K _cðn�1Þ þ s0
_c

� �
_c if s > s0

_c ¼ 0 if s 6 s0

8>><
>>:

ð4Þ

with

_cij ¼
@ui

@xj
þ @uj

@xi

� �
ð5Þ

where n is the power law index, K the consistency, s0 the yield

stress, _c the strain rate tensor, _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trð _c2Þ

q
the shear rate and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trðs2Þ

q
the magnitude of the stress tensor.

The boundary conditions for the problem may be written:

� at the inlet : Ux = V1 and Uy = 0,
� on the cylinder : V = 0 (adherence),
� at the outlet : outflow condition (a zero flux diffusion for all

flow variables).

The flow may be characterised by three basic dimensionless
numbers:

� The power law index: n.
� The Oldroyd number: this represents the ratio of plastic effects to

viscous effects. For a fluid with a Herschel–Bulkley constitutive
equation, it is defined by:

Od ¼ s0

KðV1=DÞn
ð6Þ

� The Reynolds number: this represents the ratio of inertial effects
to viscous effects. For a fluid with a Herschel–Bulkley constitu-
tive equation, it is defined by:

Re ¼ qV2�n
1 Dn

K
ð7Þ

Other useful dimensionless parameters have been defined:

� The plastic Reynolds number: this represents the ratio of inertial
effects to total shear stress effects. This number is defined as
follows:

Rep ¼ Re=ð1þ OdÞ ð8Þ

� Critical numbers: These critical numbers correspond to changes
in morphology within the flow. The first ones (Rec, Odc, Repc)
represent the limit between no recirculating and recirculating

flows. In the same way Rec, Odc and Repc define the limit
between symmetrical recirculating flow and asymmetrical flow
with vortex shedding. They thus represent the start of inertial
instability with vortex shedding. The values of these limits for
a Bingham fluid (n = 1) were calculated by Mossaz et al. [24].
The following laws were found:

Rec ¼ 48:3 Odc þ 7 ð9Þ
Rec ¼ 45:8 Odc þ 47 or Repc � 47 ð10Þ

� The drag coefficient Cd is defined by:

Cd ¼ 2Fd

qV2
1D

ð11Þ

where Fd is the drag force per unit length calculated on the
cylinder.

� Characteristic length L1: this dimensionless length is defined by
L1 = (Lw � 0.5D)/D with Lw being the length of the recirculation
calculated from the velocity field horizontally along the x-axis
in the recirculating regime (Fig. 2).
� Characteristic length L2: this dimensionless length is defined by

L2 = (Lr � 0.5D)/D with Lr being the length of the static rigid
zone downstream of the cylinder (Fig. 2). Lr is calculated using
the change in s, the magnitude of the stress tensor, along the
horizontal axis.
� Angle of separation hc: this is the angle at which the streamlines

separate from the cylinder (Fig. 2c and d). hc is calculated using
the change in s on the cylinder.

3. Numerical method

In order to avoid the discontinuity in the Herschel–Bulkley con-
stitutive equation, it is regularised by using Papanastasiou’s mod-
ification [30]. This model has been used in numerous studies
[30–34]

s ¼ K _cðn�1Þ þ s0ð1� expð�M _cÞ
_c

� �
_c ð12Þ

M represents the regularisation parameter. Thereafter, m = MD/U
will represent the non-dimensionalised form of M.

The Ansys-Fluent software [35] (version 6.2.16) was used for
this study. It is based on Finite Volume Method. A refined grid with
quadrilateral elements was defined around the cylinder in order to
take into account the problem of the boundary layer. For the
numerical method, more details can be found in the previous arti-
cle [24]. But it can specified that the two dimensional, laminar,
steady solver of Ansys-Fluent was used to solve the incompressible
flow around a cylinder. The second order upwind scheme has been
used to discretize the convective terms in the momentum equa-
tions because the velocity field is complex and the flow crosses
the meshes obliquely. The conduction terms are calculated to the
second order The ‘‘semi-implicit-consistent’’ method is used for
solving the pressure-velocity coupling.

In this study, the boundary between flowing and rigid zones is
obtained by using the condition s = s0 (1 ± e) [36], where e is a
small number dependent on the configuration and regularisation
parameter m. All zones where the inequality s > s0 (1 ± e) is verified
are considered to be flowing; if not they are considered to be rigid.
The criterion e = 0 was used in this study.

To be able to define the rigid zones precisely [24], a convergence
of 10�13 was used in this study for the residue of the velocity, and
for the residue of the mass conservation equation.
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