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a b s t r a c t

This paper focuses on the free vibration analysis of composite laminated conical, cylindrical shells and
annular plates with various boundary conditions based on the first order shear deformation theory, using
the Haar wavelet discretization method. The equations of motion are derived by applying the Hamilton’s
principle. The displacement and rotation fields are expressed as products of Fourier series for the circum-
ferential direction and Haar wavelet series and their integral along the meridional direction. The
constants appearing from the integrating process are determined by boundary conditions, and thus the
equations of motion as well as the boundary condition equations are transformed into a set of algebraic
equations. Then natural frequencies of the laminated shells are obtained by solving algebraic equations.
Accuracy, stability and reliability of the current method are validated by comparing the present results
with those in the literature and very good agreement is observed. Effects of some geometrical and
material parameters on the natural frequencies of composite shells are discussed and some representa-
tive mode shapes are given for illustrative purposes. Some new results for laminated shells are presented,
which may serve as benchmark solutions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite laminated shell structures are widely used in a vari-
ety of engineering applications, such as the aerospace, shipping,
military, and other industries. The increasing use of composite
shell structures has motivated great interest in developing various
mathematical models and computational methods for analyzing
their dynamic behaviors. Transverse effects become more pro-
nounced as the shell becomes thicker relative to its in-plane
dimension and radius of curvature. Hence, considering the shear
deformation is essential in the study of moderately thick shell
structures. Since the classical shell theory (CSTs) [1–5] is based
on the Kirchhoff–Love assumptions, in which transverse normal
and shear deformations are neglected, developing other theories
for moderately thick shells have been a major issue. So far, first-or-
der shear deformation theory (FSDTs) and higher-order shear
deformation theory (HSDTs) have been proposed and developed.
Since the transverse shear strains in the FSDTs [6–9] are assumed
to be constant in the thickness direction, shear correction factor
has to be incorporated to adjust the transverse shear stiffness for
practical shell problems. To avoid the use of shear correction factor
and have a better prediction of the vibration behavior of moder-
ately thick shells, a number of HSDTs [10–14] have been proposed.

However, as pointed out by Qu et al. [7], these HSDTs are compu-
tationally more demanding than those FSDTs, and moreover they
introduce rather sophisticated formulations and boundary terms
that are not easily applicable or yet understood. Therefore, a care-
ful selection of the appropriate shell theory is decisive for free
vibration analysis of composite laminated shells. From the existing
literature, we can know that the FSDT with proper shear correction
factor is adequate for the prediction of the global behaviors of
moderately thick shells. With this in mind, the FSDT is just em-
ployed in the present analysis.

Apart from the aforementioned shear deformation theories, it
has also been of great interest for researchers to develop accurate
and efficient methods which can be used to determine the vibra-
tion behaviors of composite laminated shells. Although substantial
descriptions of various methods for vibration analysis of composite
shells are available in the review articles [15–17] and monographs
[1,18,19], a brief introduce of recent works relating to the vibration
analysis of laminated shells of revolution, including the conical,
cylindrical shells and annular plates, is still necessary. So far, most
of the studies are about laminated cylindrical shell. Various meth-
ods have been proposed and developed to handle the free vibration
problems of such shells, such as the Rayleigh–Ritz method, Galer-
kin’s method, and finite element method. As is expected, the study
on the vibration of cylindrical shells should be naturally progressed
to that of conical shell, and yet the conical coordinate system is
function of the meridional coordinate, the resulting equations of
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motion for laminated conical shells consist of a system of partial
differential equations with variable coefficients. This involves the
inherent complexity for solving the equations of motion for conical
shells, and the implementation of closed-form approach is re-
stricted [7]. A few scholars have made efforts to deal with vibration
problems of this types of shell structures with approximate analyt-
ical and numerical techniques, such as differential quadrature (DQ)
method [2,4,9], discrete singular convolution (DSC) method [5,6], a
general domain decomposition method [7], spline method [8],
meshless method [13,17], and finite element method [20]. In addi-
tion, a few selected works related to the free vibrations of lami-
nated annular plates have been devoted by Narita [21], Lin and
Tseng [22], Vera et al. [23]. From the review of the literature, it
shows that despite various methods for vibration analysis of com-
posite shell structures, finding reliable and efficient approaches for
laminated shells of revolution with different boundary condition is
still a big challenge. Therefore, the purpose of the present work is
to introduce a simple yet powerful method for the free vibration
analysis of the considered structures. The solution is obtained by
using the numerical technique termed the Haar wavelet discretiza-
tion method, which leads to a generalized eigenvalue problem. The
main features of the numerical technique are described in Sec-
tion 2. Mathematical fundamentals and recent developments of
the present method as well as its applications in engineering are
stated below in detail. With good features in treating singularities,
the Haar wavelet series has been used to solve the vibrations of
functionally graded plate in Ref. [24] and the damage evaluation
of plates in Ref. [25]. Majak et al. [26] developed this method
and introduced it for solving solid mechanics problems. In Ref.
[27], Majak discussed the strong and weak formulations, and
pointed out the weak formulation based Haar wavelet discretiza-
tion method (HWDM) is more efficient and stability in the case
of large number of collocation points. Recently, Hein and Feklistova
[28,29] based on Haar wavelet series solved the vibrations of non-
uniform and functionally graded beams with various boundary
conditions. The present works can be considered as an extension
of the authors’ previous works [30–32] to consider the effects of
transverse shear deformation and rotary inertia for composite lam-
inated shells. In order to verify the convergence, efficiency and
accuracy of present method, free vibrations of cross-ply and an-
gle-ply laminated conical, cylindrical shells and annular plates
are investigated with different geometric and material parameters.
The main aim of this present paper is to demonstrate a convenient
and efficient application of the Haar wavelet discretization method
to the free vibrations of composite laminated shells and provide a
simple yet powerful alternative to other analytical and numerical
techniques.

2. Theoretical formulations

2.1. The Haar wavelet series and their integrals

For the sake of completeness, some aspects related to the Haar
wavelet will be described. The orthogonal set of Haar wavelet hi(n)
is a group of square waves with magnitude of ±1 in some intervals
and zeros elsewhere [26]

hiðnÞ ¼
1 n 2 ½nð1Þ; nð2Þ�
�1 n 2 ½nð2Þ; nð3Þ�
0 elsewhere
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>: ð1Þ

where the notations nð1Þ ¼ k
m, nð2Þ ¼ kþ0:5

m , nð3Þ ¼ kþ1
m are introduced.

The integer m = 2j(j = 0, 1, . . . , J) indicates the level of the wavelet,
where J is the maximal level of resolution. k = 0, 1, . . . , m � 1 is
the translation parameter. The subscript i can be expressed as
i = m + k + 1, in the case m = 1, k = 0 we have i = 2; the maximal

value of i is i = 2M = 2J+1. The case i = 1 corresponds to the scaling
function: h1(n) = 1 for n 2 [0,1] and h1(n) = 0 elsewhere.

Any function y(x), which is square integrable in the interval
[0,1], can be expanded into Haar wavelet series of infinite terms.
If y(x) is piecewise constant by itself, or may be approximated as
piecewise constant during each subinterval, then y(x) will be trun-
cated with finite terms, that is

yðxÞ ¼
X2M

i¼1

aihiðxÞ ð2Þ

where ai (i = 1, . . . , 2M) is unknown wavelet coefficient. The interval
[0,1] is divided into 2M subintervals of equal length Dx = 1/2M; the
collocation points are given as:

nl ¼
ðl� 0:5Þ

2M
; l ¼ 1;2; . . . ;2M ð3Þ

The Haar coefficient matrix H is defined as H (i, l) = hi (nl). If we
want to solve an nth order PDE, the following integrals are required
[33]

pa;iðxÞ ¼
Z n

0

Z n

0
� � �
Z n

0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
a�times

hiðtÞdta ¼ 1
ða� 1Þ!

Z n

0
ðx� tÞa�1hiðtÞdt

a ¼ 1;2; . . . ; n; i ¼ 1;2; . . . ;2M: ð4Þ

The case a = 0 corresponds to the function hi(t). These integrals
can be calculated analytically. In the case i = 1, we have pa,i(n) = na/
a!; and in the case i > 1 we obtain the integrals as follows [28]:

pn;iðnÞ ¼

0 n < nð1Þ

1
n!
ðn� nð1ÞÞn nð1Þ < n < nð2Þ

1
n!
½ðn� nð1ÞÞn � 2ðn� nð2ÞÞn� nð2Þ < n < nð3Þ

1
n!
½ðn� nð1ÞÞn � 2ðn� nð2ÞÞn þ ðn� nð3ÞÞn� n > nð3Þ

8>>>>><
>>>>>:

ð5Þ

For solving boundary value problems, the values pa,i(0) and
pa,i(1) should be calculated in order to satisfy the boundary
conditions. Substituting the collocation points in Eq. (3) into Eq.
(5) yields

PðaÞði; lÞ ¼ pa;iðnÞ ð6Þ

where P(a) is a 2M � 2M matrix. It should be noted that calculations
of the matrices H(i, l) and P(a)(i,l) must be carried out only once.

2.2. Geometrical configuration

Consider a composite laminated shell of revolution with an
arbitrary number of layers, which are perfectly bonded together.
The geometric parameters and coordinate system of a differential
element of a laminated shell are shown in Figs. 1 and 2. From
Fig. 1, the reference surface of the shell is taken to be at its middle
surface where an orthogonal curvilinear coordinate system (x,s,z)
is fixed. The total thickness of the shell is h. The included angle be-
tween the material coordinate of the kth layer and the x-axis of the
structure is denoted by h, and the index k denotes the layer number
which starts from the shell bottom. The displacement of the shell
in the x, s and z directions are denoted by u, v and w, respectively.
In Fig. 2(b), the geometry and notation for the coordinates are
shown. The cone length and cone semi-vertex angle of the shell
are represented by L and a, respectively. R1 and R2 are the radius
of the cone at its small and large edges. The radius R is a function
of axial coordinate x and u = p/2 � a is the angle between the nor-
mal of the shell surface z and the axis o. In Fig. 2(a), it is worth not-
ing that, by setting the semi-vertex angle a = 0, we can reduce the
formulation of conical shells to that of cylindrical shells. In
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