
A unified accurate solution for vibration analysis of arbitrary functionally
graded spherical shell segments with general end restraints

Zhu Su, Guoyong Jin ⇑, Shuangxia Shi, Tiangui Ye
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, PR China

a r t i c l e i n f o

Article history:
Available online 11 January 2014

Keywords:
Functionally graded spherical shell
Shell segments
Free vibration
General end restraints

a b s t r a c t

A unified accurate solution procedure for free vibration analysis of arbitrary functionally graded spherical
shell segments with general end restraints is presented. The material properties of the spherical shells are
assumed to change continuously in the thickness direction and two different four-parameter power-law
distributions are considered. The proposed method is formulated by the Ritz procedure on the basis of the
first-order shear deformation shell theory. Each of admissible functions, regardless of boundary condi-
tions, is composed of a standard Fourier cosine series and several auxiliary functions introduced to ensure
and accelerate the convergence of series representations. The accuracy and reliability of the current solu-
tion are validated by comparing the results with existing results and those generated from the finite ele-
ment analyses, and numerous new results for functionally graded spherical shells subjected to elastic
restraints are presented, which can serve as the benchmark solutions for other computational techniques
in the future research. The effects of the boundary conditions, power-law exponents, and shell segments
on the free vibrations of the spherical shells are also investigated, and some interesting insights into the
parameter effects on frequency behaviors are illustrated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a new of composite
materials, in which the material properties vary smoothly and con-
tinuously from one surface of the material to the other surface. The
unique properties can eliminate the larger inter-laminar stresses
which result from the abrupt change of material properties at the
interface between the layers of conventional laminated composite
structures. Therefore, FGMs are extensively applied in various
fields. Spherical shells are important structural components in
engineering applications due to their special geometric shapes.
With the increased use of spherical shells made of FGMs, a thor-
ough understanding of their vibration characteristics is essential
for designers and engineers.

Extensive investigations have been conducted to analyze the
free vibration of isotropic and laminated spherical shells in the past
[1–19]. There are some studies regarding spherical shells which are
based on the classical shell theory (CST) where the effects of shear
and normal deformations in the thickness direction are neglected
[1–3]. Since the CST is only valid for thin shells, many researchers
analyzed free vibration of the moderately thick spherical shells on
the basis of the first-order shear deformation theory (FSDT), such
as Artioli et al. [4], Qu et al. [5], Lee [6], Gautham and Ganesan

[7], Wu and Heyliger [8], Ferreira et al. [9], Prasad [10] and Kalnins
[11]. In the FSDT, shear deformation effect is regarded and shear
correction factors are introduced to adjust the transverse shear
stiffness. In order to have a better prediction of the vibration
behaviors for thick spherical shells, the higher-order shear defor-
mation theory (HSDT) and three-dimensional (3-D) elasticity the-
ory have been used by several investigators, such as Sai Ram and
Sreedhar Babu [12], Viola et al. [13], Panda and Mahapatra [14],
Chen et al. [15,18], Ding and Chen [16], Wu and Lo [17] and Kang
and Leissa [19]. More detailed descriptions regarding the shell the-
ories may be found in several monographs respectively by Leissa
[20], Qatu [21], Reddy [22], and Carrera [23]. Apart from the afore-
mentioned shell theories, many computational methods are ap-
plied in the vibration analysis of spherical shells, such as finite
element method [3,12], pseudospectral method [6], meshless
method [9], generalized differential quadrature (GDQ) method
[4,13], state-space method [15], Frobenius powers series method
(FPSM) [16,18], perturbation method [17] and Ritz method [19].

Some few publications [24–31] on the analysis of functionally
graded spherical shells have been reported in literature. Reddy
and Cheng [24] found exact correspondences for vibration frequen-
cies of a functionally graded spherical shallow shell using different
theories including the classical theory and first-order and third-
order shear deformation theories. Ganapathi [25] studied the dy-
namic stability behavior of a clamped functionally graded material
spherical shell structural element subjected to external pressure.
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The structural model is based on FSDT and geometric non-linearity
is considered. Qu et al. [26] presented a general formulation for
vibrations analysis of functionally graded shells subjected to arbi-
trary boundary conditions, in which the formulation is derived by
means of a modified variational principle in conjunction with a
multi-segment partitioning procedure on the basis of the FSDT. Free
vibrations of functionally graded thin and thick shells are investi-
gated by Neves et al. [29] using radial basis functions collocation
based on HSDT. Wu and Tsai [30] presented a 3-D solution for the
static analysis of functionally graded annular spherical shells by
using differential quadrature method and asymptotic expansion.

From the review of the literature, the literature available on the
vibration of FGM spherical shells is limited, and most of those lim-
ited literature are confined to shallow spherical shells and hemi-
spherical shells with and without circular opening around the
poles subjected to the classical boundary conditions. However,
there are many kinds of shape about spherical shells segments
and non-classical boundary conditions such as elastic boundaries,
which are often encountered in practical engineering applications,
and there is a considerable lack of corresponding research regard-
ing those spherical shells with general boundary conditions.

In this paper, a unified accurate solution procedure for the
vibration analysis of arbitrary functionally graded spherical shell
segments with general boundary conditions is presented. The
material properties of the spherical shells are assumed to change
continuously in the thickness direction and two different four-
parameter power-law distributions are considered. The proposed
method is formulated by the Ritz procedure on the basis of the
first-order shear deformation shell theory. Each of admissible func-
tions, regardless of boundary conditions, is composed of a standard
Fourier cosine series and several auxiliary functions introduced to
ensure and accelerate the convergence of series representations.
Mathematically, such a series expansion is capable of representing
any function including the exact solutions. The accuracy and
reliability of the current solution are validated by comparing the
results with existing results and those generated from the finite
element analyses, and numerous new results for functionally
graded spherical shells subjected to elastic restraints are pre-
sented, which can serve as the benchmark solution for other com-
putational techniques in the future research. The effects of the
boundary conditions and material power-law distribution on the
free vibration of the spherical shells are also investigated.

2. Functionally graded spherical shells

A functionally graded spherical shell segment with radius R is
considered, as shown in Fig. 1. The geometry and dimensions of
the shell segment are defined with respect to the coordinates u,
h and z along the meridional, circumferential and radial directions
which is located in the middle surface of the spherical shell. The
spherical shell segment domain is bounded by 0 6 u 6 u1 � u0,
0 6 h 6 2p,�h/2 6 z 6 h/2. The arbitrary spherical shells can be ob-
tained by setting different values to u0 and u1. The displacement
components of an arbitrary point within the spherical shell seg-
ment domain in the u, h and z directions are designated by �u; �v
and �w. The distance of each point from the axis of revolution is gi-
ven by R1 = R sin (u + u0). Each edge of the spherical shell segment

is restrained by three sets of independent linear springs (ku, kv, kw)
and two sets of rotational springs (Ku,Kh) to simulate the given or
typical boundary conditions. The clamped boundary (C) can be
simulated by assuming the springs’ stiffness equal to infinity,
which is represented by a very large number, 1 � 1015 N/m. and
a free boundary (F) can be obtained by assuming the springs’ stiff-
ness equal to zero. The corresponding spring stiffnesses for four
types of classical boundaries are given in Table 1.

Typically, the functionally graded materials are made of a mix-
ture of ceramic and metal. The material properties are assumed to
vary smoothly and continuously along the thickness direction and
can be expressed as:

PðzÞ ¼ ðPc � PmÞVcðzÞ þ Pm ð1Þ

where P represents the material properties of constituents includ-
ing Young’s modulus E(z), density q(z) and Poisson’s ratio l (z).
The subscripts c and m represent the ceramic and metallic constit-
uents, respectively. Vc is the volume fraction of the ceramic and fol-
lows two general four-parameter power-law distributions:
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where the power-law exponent p and parameters a, b and c deter-
mine the material variation profile through the functionally graded
shell segment thickness. The variations of volume fraction Vc for dif-
ferent values of the parameters a, b, c and p are depicted in Fig. 2.
More detailed descriptions on the material variation profile of FGMs
can be found in Ref. [27].

Fig. 1. The coordinate system and geometry of a spherical shell segment: (a) the
coordinate system; (b) a differential element of the FGM spherical shell segment;
(c) meridional section of middle surface; and (d) circumferential section of middle
surface.

Table 1
The corresponding spring stiffnesses for the classical boundary conditions.

BC Essential conditions ku kv kw Ku Kh

Clamped (C) u = v = w = wu = wh = 0 1e15 1e15 1e15 1e15 1e15

Simply-supported (SS) u = v = w = wh = 0 1e15 1e15 1e15 0 1e15

Shear-diaphragm (SD) v = w = 0 0 1e15 1e15 0 0
Free (F) No constraints 0 0 0 0 0
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