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a b s t r a c t

A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory is established
in the current investigation. The generalized Euler–Lagrange equations and corresponding boundary con-
ditions are naturally derived from the Hamilton’s principle. Then axial wave propagation of small scale
bars, static bending of cantilever beams, buckling and free vibration of simply supported beams are ana-
lytically solved by using the simplified strain gradient beam theory. The influences of the Poisson’s effect
as well as the weak non-local strain gradient elastic effect are discussed. The Poisson’s effect is found to
increase with the increase of the beam thickness in the buckling analysis, while the higher-order bending
moment induced by stretch strain gradient has an insignificant influence on the critical buckling load in
our numerical analysis. However, the effect of the higher-order bending moment is very significant on
axial wave propagation and static bending of micro-scale beams. The current work is very helpful in
understanding the microstructure-related size dependent phenomenon.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The lacking of the material length scale parameter in the
classical continuum elasticity theory leads to an inaccurate
description of the structural behavior at micron and nanometer
scale [1]. Higher-order elastic theories such as elasticity theory
with couple stresses [2,3], strain gradient elasticity theory [4,5],
micropolar elasticity theory [6] and non-local elasticity theory
[7] have been established to describe material and structural
behaviors with micro-structure. Among these higher-order elastic-
ity theories, the linear strain gradient elasticity theory has been
extensively investigated both in plastic [8–11] and elastic domains
[12–30]. The linear strain gradient elasticity theory involves addi-
tional material length scale parameters besides the classical mate-
rial constants so that it can be used to determine the size
dependent phenomenon at small scale structures.

Mindlin was one of the pioneers who firstly posed the linear
elasticity theory with micro-structure [4]. Subsequently Mindlin
summarized the linear strain gradient elasticity for isotropic mate-
rials, in which 16 additional material length scale parameters are
included besides two classical Lamé constants [5]. In this linear
strain gradient elasticity theories, the strain energy density
depends on both the classical strain and the gradients of strain
[5]. On the basis of Minlin’s linear strain gradient elasticity theory,
a class of phenomenological strain gradient plasticity theory is

formulated [11] to account for the strain gradient effects at the mi-
cron scale. Lam et al. [14] rewrote the linear strain gradients elas-
ticity theory [4,11] and experimentally determined the material
parameters of epoxy cantilever from a bending procedure. A mod-
ified couple stress elasticity theory (MCSET) was meanwhile pro-
posed based on the generalized linear strain gradient elasticity
theory (SGET) [31]. Park and Gao [32] and Kong et al. [16,21] devel-
oped Bernoulli–Euler beam models to incorporate the strain gradi-
ents effects at small scale structures. However, the constitutive
formulation of the general strain gradient elasticity theory is extre-
mely complex and difficulty in analysis of structural behaviors. The
difficulties in solving the boundary value problems in strain gradi-
ent elasticity theory, even in the simple models are very complex.
A simple form strain gradient elasticity theory is novel and inviting
for analyzing structural behavior with consideration of microstruc-
tural effect, which is essential because of the widely applications of
such structures in micro-systems. A simplified strain gradient elas-
ticity theory (SSGET) was thereby proposed by Altan and Aifantis
[33] to formulate a simple linear strain gradient elasticity theory.
Recently, Gao and Park [34] proposed the variational formulation
of the simplified strain gradient elasticity theory and directly ap-
plied the obtained displacement form into the problem of a pres-
surized thick-walled cylinder and spherical shell [35]. Bending
and buckling problems of thin elastic beams with the strain gradi-
ents were analyzed by Lazopoulos and Lazopoulos [22] based on
the simplified strain gradient elasticity theory with the surface en-
ergy. The linear and non-linear plate models based on the simpli-
fied strain gradient elasticity theory were also proposed to show
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the size dependent phenomena at small scale structures [18,26].
The non-linear micro-beam model based on the simplified strain
gradient elasticity theory with surface energy [28] and the non-lin-
ear functionally graded micro-beam models [27–30,36] were devel-
oped to study the size dependent structural behavior. The general
linear strain gradient elasticity theory has been extensively applied
to solve the static and dynamic problems of micro-beams
[12,13,15,17,18,20,22,23,29,37,38]. However, all the aforemen-
tioned studies assumed a uniaxial stress condition and the effect
of the Poisson’s ratio was neglected. The microstructure-dependent
Timoshenko beam model based on the modified couple stress theory
proposed by Ma et al. [39] showed that both the effects of couple
stress and the Poisson’s ratio are very significant for small scale
structures. The micro-structure dependent Bernoulli–Euler beam
model and Timoshenko beam model for functionally graded beams
proposed by Reddy [36,40] also indicate the significance of the geo-
metric non-linearity and Poison’s effect. It should be noted that the
matrix of the sixth order strain gradient elastic tensor for anisotropic
cases is very complex and the matrix representation for all the 3D
anisotropic cases was recently discussed by Auffray et al. [41]. For
anisotropic materials and the electromechanically coupling issues
[42], Hu and Shen [43] developed a theory for nano-dielectrics with
the electric field gradient and surface effects, Shen and Hu [44]
developed a theory for nano-dielectrics with the flexoelectricity
and surface effects. Liang et al. [45] established a simple Ber-
noulli–Euler dielectric beam model with the strain gradient effect
for electromechanical coupling problems. These aforementioned
works showed that the effect of the strain gradient elasticity is very
significant when the thickness of a beam is very small.

The objection of the present study is to provide a variational
formulation of the simplified linear strain gradient beam theory
by applying the Euler beam assumption, and the wave propagation,
static bending, buckling and free vibration of micro-beams with
microstructural effect are analytically solved. The non-linearity,
the Poisson’s ratio and the strain gradient elastic effects are quan-
titatively determined.

2. Theory and beam model

2.1. The simplified strain gradient elasticity theory (SSGET)

The strain energy density function for isotropic linear elastic
materials in the simplified strain gradient elasticity theory can be
expressed as the quadratic of the classical strain and its first gradi-
ents [34]

u ¼ uðeij;jijkÞ ¼ leijeij þ
k
2
eiiejj þ l2 ljijkjijk þ

k
2
jiikjjjk

� �
ð1Þ

where l and k are the Lamé constants in the classical elasticity the-
ory. l is a length scale parameter which corresponds to the strain
gradient elasticity. eij is the classical strain tensor and jijk is the
third rank strain gradient tensor, which are defined, respectively, as

eij ¼
1
2
ðui;j þ uj;iÞ; jijk ¼ eij;k ¼

1
2
ðui;jk þ uj;ikÞ ð2Þ

Thus, one has eij = eji, jijk = jjik.
Under the infinitesimal deformation, the constitutive equations

for an isotropic linear elastic material can be obtained from the
strain energy density as

rij ¼
@u
@eij
¼ 2leij þ kelldij; sijk ¼

@u
@jijk

¼ l2ð2ljijk þ kjllkdijÞ ð3Þ

where rij is the classical Cauchy stress tensor and sijk is the higher-
order stress (moment stress or double stress) tensor. It is noted that
rij = rji, jijk = jjik.

By means of the Eqs. (1) and (3), the strain energy density can
be expressed as

u ¼ uðeij;jijkÞ ¼
1
2
rijeij þ

1
2
sijkjijk ð4Þ

2.2. Bernoulli–Euler beam model

The simple Bernoulli–Euler beam model which only takes
account into the axial deformation and neglects the shear deforma-
tion is usually suitable for slender beams. The classical Bernoulli–
Euler beam theory assumes that the beam thickness is much less
than the radius of curvature induced by external loading and the
cross-section of the beam is constant along the length of the beam.
The coordinate system is often chosen as x-axis is along the beam
length and coherent with the undeformed beam, y-axis points the
wide direction and z-axis is along the thickness direction (Fig. 1). In
addition, the applied loads and geometry are assumed that the dis-
placement is only functions of x and z coordinates and time t. The
component of the displacement along the wide direction is second-
ary and neglected in the beam theory.

The general expression of the displacement components of Ber-
noulli–Euler beam can be written as [32,36]

u1 ¼ U0ðx; tÞ þ zhðx; tÞ; u2 ¼ 0; u3 ¼WEðx; tÞ ð5Þ

where u1, u2, u3 are x-, y- and z-components of the displacement
vector u, and U0, WE are the mid-plane displacement components,
h � � @WE

@x is the rotation angle of the cross-section.
The nontrivial strains and strain gradients are obtained from

Eqs. (2) and (5) as
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The variation of the kinetic energy is
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where q is the mass density and (I0, I1, I2) are the mass inertias

ðI0; I1; I2Þ ¼
Z

A
qð1; z; z2ÞdA ð8Þ

The virtual work done by the external forces are

dW ¼
Z L

0
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@x
@dWE

@x

 !
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Fig. 1. Cantilever beam configuration.
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