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a b s t r a c t

Buckling and free vibration of magnetoelectroelastic nanoplate resting on Pasternak foundation is inves-
tigated based on nonlocal Mindlin theory. The in-plane electric and magnetic fields can be ignored for
nanoplates. According to Maxwell equations and magnetoelectric boundary conditions, the variation of
electric and magnetic potentials along the thickness direction of the nanoplate is determined. Using
the Hamilton’s principle, the governing equations of the magnetoelectroelastic nanoplate are derived.
Numerical results reveal the effects of the electric and magnetic potentials, spring and shear coefficients
of the Pasternak foundation on the buckling load and vibration frequency. These results can serve as
benchmark solutions for future numerical analyses of magnetoelectroelastic nanoplates.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nanostructures have increased considerable attention among
the experimental and theoretical research communities. These
nanostructures [1–3] are found to be possessing extraordinary
mechanical, electrical, electronics and thermal properties as com-
pared to the conventional structural materials. A vast area of novel
applications of these nanostructures is foreseen in the coming
years. These include aerospace, biomedical, bioelectrical, superfast
microelectronics, etc. Understanding the accurate mechanical and
physical properties of these nanostructures and their impacts on
its performance and reliability is thus necessary for its productive
applications. Therefore, microstructure-dependent size effects are
often observed [4–8].

In the domain of materials science, some recent advances are
the smart or intelligent materials where piezoelectric and piezo-
magnetic materials are involved. These materials called magneto-
electroelastic composites have the ability of converting energy
from one form (among magnetic, electric, and mechanical ener-
gies) to the other. Furthermore, they exhibit magnetoelectric effect
that is not present in single-phase piezoelectric or piezomagnetic
materials [9–14].

Recently, much attention has been paid to the structural analy-
sis of the magnetoelectroelastic plate. Pan [15] presented an exact
closed-form solution for the static deformation of the layered pie-
zoelectric/piezomagnetic plate based on a new and simple formal-
ism resembling the Stroh formalism, and the propagator matrix

method was used to handle the multilayered case. Using the state
vector method, Wang et al. [16] obtained an analytical solution for
magneto-electro-elastic, simply supported and multilayered rect-
angular plates in the form of infinite series. The state-vector ap-
proach was proposed by Chen et al. [17] for the analysis of free
vibration of magneto-electroelastic layered plates. Wang et al.
[18] derive the analytical solution for a three-dimensional trans-
versely isotropic axisymmetric multilayered magneto-electro-
elastic (MEE) circular plate under simply supported boundary
conditions. Liu and Chang [19] presented the closed form for the
vibration problem of a transversely isotropic magneto-electro-
elastic plate. A nonlinear large-deflection model for magnetoelec-
troelastic rectangular thin plates is proposed by Xue et al. [20].
The bending problem for a transversely isotropic MEE rectangular
plate is analyzed by imposing the Kirchhoff thin plate hypothesis
on the plate constituent. An equivalent single-layer model for the
dynamic analysis of magnetoelectroelastic laminated plates is pre-
sented by Milazzo [21]. The electric and magnetic fields are as-
sumed to be quasi-static and the first-order shear deformation
theory is used.

Considered the nonhomogeneous magnetoelectroelastic solids,
Bhangale and Ganesan [22] carried out static analysis of FGM mag-
neto-electro-elastic plate by finite element method under mechan-
ical and electrical loading. Wu et al. [23] extended the Pagano
method for the three-dimensional plate problem to the analysis
of a simply-supported, functionally graded rectangular plate under
magneto-electro-mechanical loads.

To the best of authors’ knowledge, however, the buckling and
free vibration of magnetoelectroelastic nanoplate resting on a Pas-
ternak foundation has not been considered.
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Based on the nonlocal theory, the buckling and free vibration
analysis of a magnetoelectroelastic nanoplate resting on a Paster-
nak foundation is investigated. The in-plane electric and magnetic
fields can be ignored for nanoplates. According to Maxwell equa-
tions and magnetoelectric boundary conditions, the variation of
electric and magnetic potentials along the thickness direction of
the nanoplate is determined. The governing equations of magneto-
electroelastic nanoplate are derived based on application of Ham-
ilton’s principle. Numerical results reveal the effects of the
electric and magnetic potentials, spring and shear coefficients of
the Pasternak foundation on the buckling load and natural
frequency.

2. Nonlocal and Mindlin plate theories

2.1. Nonlocal theory of magnetoelectroelasticity

Nonlocal elastic theory assumes that the stress state at a refer-
ence point x in the body is regarded to be dependent not only on
the strain state at x but also on the strain states at all other points
x0 of the body. The most general form of the constitutive relation in
the nonlocal elasticity type representation involves an integral
over the entire region of interest. The integral contains a nonlocal
kernel function, which describes the relative influences of the
strains at various locations on the stress at a given location. The
constitutive equations of linear, homogeneous, isotropic, non-local
elastic solid are given by Eringen [24].

rnl
ij ðxÞ ¼

Z
v
aðjx� x0j; sÞrl

ijdVðx0Þ; 8x 2 V ; ð1Þ

where rnl
ij and rl

ij are, respectively, the nonlocal stress tensor and lo-
cal stress tensor. a(jx � x0j,s) is the nonlocal modulus, jx � x0j is the
Euclidean distance, and s = e0a/l is defined that l is the external
characteristic length, e0 denotes a constant appropriate to each
material, and a is an internal characteristic length of the material.
Consequently, e0a is a constant parameter which is obtained with
molecular dynamics, experimental results, experimental studies
and molecular structure mechanics. For the magnetoelectroelastic
solid, the nonlocal constitutive equation can extend to Eq. (1) and
the following equations

Dnl
k ðxÞ ¼

Z
v
aðjx� x0j; sÞDl

kdVðx0Þ; 8x 2 V ; ð2Þ

Bnl
k ðxÞ ¼

Z
v
aðjx� x0j; sÞBl

kdVðx0Þ; 8x 2 V ; ð3Þ

where Dnl
k and Dl

k are the components of the nonlocal and local elec-
tric displacement, respectively, and Bnl

k and Bl
k are the components

of the nonlocal and local magnetic induction, respectively.
Making certain assumptions presented by Eringen [24,25], the

integral equations of nonlocal elasticity can be simplified to partial
differential equations. Eqs. (1)–(3) takes the following simple form:

1� ðe0aÞ2r2
� �

rnl
ij ¼ rl

ij; ð4Þ

1� ðe0aÞ2r2
� �

Dnl
k ¼ Dl

k; ð5Þ

1� ðe0aÞ2r2
� �

Bnl
k ¼ Bl

k: ð6Þ

where r2 is the Laplacian operator in the above equations.

2.2. The Mindlin plate theory

Based on the Mindlin plate theory, the displacement field can be
expressed as

uxðx; y; z; tÞ ¼ zwxðx; y; tÞ; ð7Þ

uyðx; y; z; tÞ ¼ zwyðx; y; tÞ; ð8Þ

uzðx; y; z; tÞ ¼ wðx; y; tÞ; ð9Þ

where wx(x,y, t) and wy(x,y, t) are the rotations of the normal to the
mid-plane about x and y directions, respectively.

The non-zero strain associated with the above displacement
field can be expressed in the following form:

exx ¼ z
@wx

@x
; ð10Þ

eyy ¼ z
@wy

@y
; ð11Þ

cyz ¼
@w
@y
þ wy; ð12Þ

czx ¼
@w
@x
þ wx; ð13Þ

cxy ¼ z
@wx

@y
þ
@wy

@x

� �
; ð14Þ

where exx, eyy are the normal strain components and cyz, czx, cxy are
the shear strain components.

3. Modeling of the problem

Consider a magnetoelectroelastic nanoplate with length l, width
b and thickness h resting on a Pasternak foundation as depicted in
Fig. 1. A Cartesian coordinate system (x,y,z) is used to describe the
plate with z along the plate thickness direction and the x � y plane
sitting on the midplane of the undeformed plate. The magnetoelec-
troelastic body is poled along z-direction and subjected to an elec-
tric potential V0 and a magnetic potential X0 between the upper
and lower surfaces of the plate.

3.1. Constitutive relations for magnetoelectroelastic nanoplate
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Magnetoelectroelastic nanoplate

Fig. 1. Schematic of a magnetoelectroelastic naoplate resting on Pasternak elastic
foundation.
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