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a b s t r a c t

Lamb waves are ultrasonic guided waves that propagate between two parallel free surfaces and their use
for damage detection has been widely explored and demonstrated. Damage in materials/structures can
be detected by analyzing the difference between the phase/group velocity and the loss of amplitude of
Lamb waves on damaged and un-damaged specimens. The propagation characteristics of Lamb waves
are described in the form of dispersion curves, which are plots of phase/group velocities versus the prod-
uct of frequency-thickness generated by solving the Lamb wave equations. Lamb waves’ dispersion
behaviors for isotropic materials are well established in the literature; however, such is not the case
for the laminated composites. The most common methods for solving the Lamb wave equations in com-
posites consist of using laminated plate theory or 3D linear elasticity by assuming an orthotropic and/or
higher symmetry. This assumption may not be true, if the actuators and sensors in an orthotropic or
transversely isotropic laminates are installed in a non-principle direction or the layup is symmetric
but not balanced.

This paper presents a full derivation of Lamb wave equations for n-layered monoclinic composite lam-
inates based on linear 3D elasticity by considering the displacement fields in all three directions using the
partial wave technique in combination with the Global Matrix (GM) approach. In the partial wave tech-
nique, the principle of superposition of three upward and three downward travelling plane waves are
assumed in order to satisfy the associated boundary conditions. The bounded upper and lower surfaces
reflect the waves and the combination of these reflections going towards the upper or lower interfaces
results in the propagating guided waves. The GM approach is used to assemble all the equations from
each layer to form a global, unified matrix that describes the displacement and stress fields along the
entire laminate associated with the wave propagation. A robust method for numerically solving the Lamb
wave equations is also presented.

The presented method was verified experimentally by analyzing the propagation of Lamb waves in two
different composite panels constructed out of unidirectional carbon-fiber epoxy prepreg and fiber-metal
laminate (GLARE 3-3/4). The panels were instrumented with lead zirconate titanate (PZT) piezoelectric
sensors, which were excited at different frequencies ranging from 20 kHz to 500 kHz to generate and
acquire the waves. The waves were excited and gathered at three different propagation angles of 0�,
45�, and 90� for the carbon-fiber epoxy laminate panel and at six different angles of 0�, 20�, 45�, 70�
and 90� for the fiber-metal laminates (GLARE). The phase and group velocities of the fundamental sym-
metric (So) and anti-symmetric (Ao) Lamb waves were extracted by tracking the peaks of each individual
wave phase and the wave envelope respectively using an in-house code developed in MATLAB. It was
found that the presented 3D linear elasticity model followed the experimental data closely for both sym-
metric and anti-symmetric Lamb modes. The analytical method presented in this paper was able to pre-
dict the Lamb wave dispersion for both the carbon-fiber epoxy laminate and the hybrid fiber-metal
laminate proving the robustness and versatility of the solution method.
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1. Introduction

The existence of Lamb waves was originally proven mathemat-
ically by Lamb [1], based upon the Rayleigh wave equations devel-
oped by Rayleigh [2]. The difference between Rayleigh and Lamb
waves are the boundary conditions affecting their propagation
characteristic. Rayleigh waves propagate in a medium with one
nearby free surface boundary; whereas the propagation of Lamb
waves is guided by two nearby parallel free surface boundaries.
Lamb waves are elastic perturbations resulting from the superpo-
sition of longitudinal waves (P-waves) and shear waves (S-waves),
for which the displacements occur both in the direction of wave
propagation and perpendicular to it [3]. Compared with body
waves, which propagate in solids, far away from the free surface
boundaries, Lamb waves can propagate through longer distances
with minimal loss of energy and therefore low amplitude attenua-
tion. This enables the detection of Lamb waves with reasonable sig-
nal-to-noise ratios (SNR) even in highly dispersive/attenuative
materials such as polymer matrix composites. The attenuation is
attributed to the small damping imposed by the two close-by par-
allel free surface boundaries, which can be observed in a plate or
shell-like structural elements. One interesting aspect of Lamb
waves is that their propagation within the host material is influ-
enced by the presence of flaws and damage, as it is by any other
boundary condition. This enabled the application of Lamb waves
for damage detection in Non-Destructive Inspection (NDI) tech-
niques, which was first proposed by Worlton [4]. After the initial
experiments performed by Frederik and Worlton [5], the applica-
tion of Lamb waves has been widely explored, particularly when
related to smart structures with permanently embedded, or
bonded sensors, as envisioned by the Structural Health Monitoring
(SHM) community. The high number of proposed, experimented,
and demonstrated applications is related with the advance in elec-
tronics and computational capability enabling the generation,
acquisition, and processing of Lamb waves even at high frequen-
cies in the MHz range.

For the intended application of Lamb waves, the understand-
ing of the underlying physics behind the Lamb waves and their
multi-mode propagation characteristics within the host material
is essential. Lamb waves can exist simultaneously in two modes,
which are symmetric (Sn) and anti-symmetric (An) modes, that
can propagate independently of each other. Here, the subscript
(n) is an integer indicating the order of the mode, or the number
of inflexion points found in the wave deformation field across
the thickness. For a finite plate thickness there exist an infinite
number of such multi-mode symmetric and anti-symmetric
Lamb waves, along with shear horizontal (SHn) waves, differing
from one another by their phase and group velocities as well
as distribution of the displacements and stresses through the
plate thickness [6]. However, for most practical applications only
input signals that excite uniquely the fundamental (with no
inflection points) anti-symmetric (Ao) and symmetric (So) Lamb
waves are usually considered to avoid an increased complexity
in the interpretation of gathered wave signals containing inter-
ference of the multiple modes. Besides the existence of several
wave modes, Lamb waves are dispersive, i.e., the propagation
velocity of each wave mode and their order/excitation depends
on the excitation frequency. This behavior is predicted by the
relevant Lamb wave characteristic equations and is represented
by the dispersion curves, i.e., propagation velocity versus fre-
quency-thickness curves. The dispersive behavior and the char-
acterization of the displacement fields of the different waves
and modes are essential for the selection of sensors, sensor
dimensions/types, installation positions on/in the structure, asso-
ciated sensor systems, signal generation and acquisition, and
data processing [7].

Propagation characteristics of Lamb waves for isotropic mate-
rials are well defined in the literature from Mindlin [8], Viktorov
[3] to Rose [9], which is not the case for composites. The use of
composite is growing rapidly in the aerospace structures; where
there is a strong desire to use materials with high strength to
weight ratios. Furthermore, the use of composite enables the
application of tailored designs by applying the appropriate
strength/stiffness in the required directions, while minimizing
the structural weight. However, composite materials present rad-
ically different behaviors as response to damage existence as
compared to their better understood metallic (isotropic) counter-
parts. In some cases this behavior is not desirable, since damage
can grow rapidly and/or cannot be easily detected using the
conventional NDI methods. Lamb waves application has shown
some promise for damage detection in composite structures
[10–12], however; as mentioned previously, most of the
theoretical analysis development enabling the precise application
of Lamb waves has been performed mostly for isotropic materi-
als, or for anisotropic materials with orthotropic and higher
symmetry.

Propagation of Lamb waves in composites are complex due to
material anisotropy and strongly attenuative/dispersive behavior
of the wave [13]. Parameters of composites materials such as fi-
ber volume fractions, layup sequence, and types of matrix/rein-
forcements used, strongly influence the wave propagation
characteristics. Waves in composite plates propagate in each
direction with different velocities, with the shape of the wave
front changing with frequency [6]. For simplification, composite
laminates are assumed to have orthotropic or higher degrees of
symmetry to generate the dispersion curves. The simplest method
to generate the Lamb wave dispersion curves as compared with
other methods is by using the effective stiffness approach, in
which the geometrically weighted average of the constituent
properties are used as the average material constants for the en-
tire laminate [14]. Another simpler method is by using the classi-
cal laminated plate theory (CLPT); however, the CLPT fails to
accurately predict the Lamb wave dispersion characteristic at
higher frequencies [15]. Therefore, the CLPT has been preceded
by higher-order plate theories [16] to better predict the disper-
sion characteristics. Despite being computationally efficient, CLPT
and higher-order theories are only an approximation and fail to
accurately predict the higher Lamb wave modes at higher fre-
quencies [17]. Datta et al. [18] provided another approximation
method for a multi-layered transversely isotropic material based
on stiffness method [19] in which the displacement distribution
through the thickness was approximated by polynomial interpo-
lation functions. An additional hybrid method includes the use
of Semi-Analytical Finite Element (SAFE), which uses the Finite Ele-
ment Method (FEM) to discretize the cross-section and describes
the displacement along the wave propagation with the use of
analytical simple harmonic functions [20]. To date the exact
method for characterizing Lamb waves’ propagation in compos-
ites is by using the linear 3D elasticity method. Some of the
noticeable work regarding the dispersion relationship is provided
in the following paragraph.

Anderson [21] used a curl-free and divergence-free displace-
ment vector field approach in a single layer with hexagonal sym-
metry to derive the dispersion curves and presented a method
based on Hankel [22] to extend his approach for a multi-layer com-
posite. Solie and Auld [23] used the partial wave technique for cu-
bic symmetry using Mindlin boundary conditions [24] to obtain
the decoupled shear-vertical (SV) and longitudinal (P) modes dis-
persion curves. Kennet [25] provided a derivation for the coupling
between the P and SV waves for a stratified isotropic medium.
Chimenti and Nayfeh [26] presented leaky Lamb wave equations
for a unidirectional composite laminate with transversely isotropic
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