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a b s t r a c t

Syntactic foams are a class of particulate composites consisting of microballoons dispersed in a matrix
material. While several modeling schemes have been developed to study their elastic response, the
mechanics of failure of these composites is a largely untapped research area. Here, we propose a math-
ematically tractable framework to analyze particle–matrix interfacial debonding in uniaxial tension. The
proper generalized decomposition is used to study the deformation of the matrix and the inclusion, and
the method of Lagrange multipliers is adapted to satisfy the boundary conditions along the bonded por-
tion of the inclusion–matrix interface. A variational approach is utilized to derive the governing differen-
tial equations, and the Galerkin method is implemented to cast the problem into a manageable set of
algebraic equations. An iterative procedure based on the fixed point algorithm is ultimately used to deter-
mine the displacement fields. Results are specialized to a glass particle–vinyl ester matrix system, and a
parametric study is conducted to understand the mechanics of debonding. Results are validated through
available data and new finite element simulations. We find that the proposed framework is in very good
agreement with numerical results for a wide range of debonding angles, inclusion volume fractions, and
inclusion wall thicknesses.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Syntactic foams are lightweight composite materials that are
obtained by embedding thin hollow inclusions, often called micro-
balloons, in a matrix material [39]. The hollow reinforcements al-
low for improving stiffness and strength [7,21,22,37,39,45,52,68],
reducing structural weight [23,29,62], and controlling moisture
absorption and thermal expansion [48,57,65].

Due to the wide spectrum of applications of syntactic foams as
core materials for sandwich panels in marine and aerospace struc-
tures [24,30,46], several approaches have been proposed in the lit-
erature to predict their elastic properties [7,8,26,36,42,68]. These
studies have helped identifying the role of the inclusion wall thick-
ness and volume fraction on the Young’s modulus and Poisson’s ra-
tio of syntactic foams. In particular, Huang and Gibson [26] utilized
an infinitely dilute inclusion dispersion to predict syntactic foams’
elastic properties. Bardella and Genna [8] proposed a four-phase
unit cell model based on a self-consistent scheme to study syntac-
tic foams’ elastic response, and a similar multi-phase concentric
sphere model was utilized by Marur [36]. Porfiri and Gupta [42]

developed a differential scheme to analyze the elastic properties
of syntactic foams at high inclusion volume fraction. In [10], a
thorough review of these approaches was presented along with
a detailed assessment against finite element simulations on
numerical models comprising fifty inclusions.

Only recently, some research effort have been devoted to
the analysis of the failure mechanisms of syntactic foams
[9,31,37,49–51,55,56]. More specifically, Jones et al. [31] and
Shams et al. [49] studied the static buckling of a microballoon
embedded in an infinite elastic medium under remote uniaxial
loading to shed light on the phenomenon of inclusion crushing in
syntactic foams’ compression. A comparison of different shell the-
ories and computational methods for the prediction of the com-
pressive failure of isolated microballoons has been recently
presented in [51]. In [9], the compressive failure of a microme-
chanical model with fifty inclusions was studied through finite ele-
ment simulations. In [55,56], particle–matrix debonding was
analyzed in a unit cell model, consisting of a partially debonded
hollow inclusion in an infinitely extended matrix. Debonding was
modeled through two interfacial spherical cap cracks symmetri-
cally located along the tensile loading direction, and the problem
is analyzed using three dimensional elasticity. An alternative
approach aimed at reducing the computational complexity has
been recently introduced by [50]. Therein, the generalized Vla-
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sov–Jones foundation model and Donnell linear shell theory were
used to model the matrix and the inclusion, respectively. The com-
parison with finite element results reported in [50] shows that the
method is successful in predicting the energy storage in the unit
cell only for relatively small interfacial cracks, while significant
discrepancies are observed as the extent of the debonds exceeds
a few percent of the particle surface. As described therein, this is
likely due to the simplicity of the foundation model, which does
not allow to accurately describe the complex dependence of the
matrix deformation on both the radial and meridional coordinates,
as observed in [55,56]. The main objective of this paper is to estab-
lish an effective modeling framework to alleviate the drawbacks
reported in [50] in the description of the matrix deformations
through the use of the proper generalized decomposition (PGD)
[4,15,61].

The PGD is widely employed to study multi-dimensional
[4,5,13,15,17,20,41], multi-physics [2,33,40], and degenerate geo-
metrical domain problems that are derived from three-dimen-
sional geometries such as plates and shells [59–61]. The PGD is
based on the ‘‘separated representation’’, which consists of using
successive enrichments to construct an approximation of the solu-
tion in the form of a finite sum of the product of functions of the
system coordinates [15,60,61]. The separated representation was
originally proposed by Ladevéze [32] to solve a nonlinear transient
thermo-mechanical problem within the large time increment (LA-
TIN) method. The PGD scheme was adapted to solve multi-dimen-
sional transient Fokker–Planck equation in space–time domain in
[4,5]. For degenerate geometrical applications, in [59–61], the
PGD was used to model laminated and sandwich structures based
on the finite element method, similarly to the approach presented
in [13]. Results reported in [59–61] were compared to a classical
layer-wise solution of the problem in terms of different geome-
tries, loading conditions, and boundary conditions to assess the po-
tential of the approach. Giner et al. [20] studied the problem of a
three-dimensional crack in a linear elastic plate by considering
Poisson’s ratio and plate thickness as additional unknowns in a
separated representation solution of the problem using the PGD.
Analyses reported in [20] demonstrate that the PGD drastically re-
duces the computational complexity and decreases the computa-
tional costs, even if material and geometry parameters are
considered as independent variables in the solution [13,15,17]. In
addition, Ladevéze et al. [33] simultaneously utilized the LATIN
method and the PGD to study a three-dimensional L-shape sub-
structure under a distributed load with viscoelastic material prop-
erties. In [15,16,41], extensive reviews on the applications,
foundations, and model reduction properties of the PGD can be
found..

In this work, we use the PGD to describe the displacement fields
in the unit cell problem considered in [50]. The unit cell, consti-
tuted by a spherical matrix embedding a linear Donnel thin shell
[3,53] is subjected to uniaxial tension load at the outer radius of
the matrix. We consider two equal spherical cap cracks along the
inclusion–matrix interface, at the north and south poles of the
inclusion. Lagrange multipliers are used to impose the essential
boundary conditions along the bonded portion of the inclusion
and the matrix [12,67]. We derive the governing equations of the
unit cell using a variational approach, and the Galerkin method is
adapted to derive a set of coupled nonlinear algebraic equations
to describe the until cell deformations. An iterative method based
on the fixed point algorithm [61] is implemented to find the dis-
placement fields in the unit cell. We conduct a parametric study
to elucidate the effect of shell wall thickness, debonding angle,
and volume fraction on the displacement fields, energy storage,
and opening displacement at the inclusion–matrix interface. The
proposed framework is validated through available data in the lit-
erature [50,55] and new finite element results.

The paper is organized as follows. In Section 2, we define the
problem geometry, and the kinematic assumptions of the shell
and the matrix are introduced. In Section 3, the displacement fields
in the shell and the matrix are described based on the PGD. In Sec-
tion 4, we derive the governing equations of the problem using a
variational method. Therein, we present an iterative method to
solve the sets of the coupled nonlinear algebraic equations. In Sec-
tion 5, the analyses are specialized to a glass particle–vinyl ester
matrix system, and a parametric study is performed to verify the
accuracy of the proposed scheme. In Section 6, the main conclu-
sions of this study are summarized. Further, in Appendix A, we out-
line the residual equations used in Section 4.2. In Appendix B, we
report the coefficients used in the governing equations and the ma-
trix components used in Section 4.2. In Appendix C, details on the
finite elements are described. Finally, in Appendix D, we report on
the convergence study of the analytical solution.

2. Problem statement

We analyze a unit cell consisting of a single hollow inclusion
with mean radius Rs and wall thickness h embedded in a spherical
matrix with outer radius Rm. The volume fraction of the inclusion is
defined as U ¼ ðRs=RmÞ3. We consider a spherical coordinate sys-
tem ðr; h;/Þ to describe the problem, where r is the radial coordi-
nate, h is the meridional direction (zenith angle), and / is the
circumferential direction (azimuth angle). Fig. 1 shows the spheri-
cal coordinates along with the Cartesian coordinate system ðx; y; zÞ.
In this problem, the north and south poles of the inclusion are the
points at y ¼ �R, respectively, that is, h ¼ 0 and h ¼ p (see Fig. 1).
Similarly, the equator of the inclusion is at y ¼ 0, that is, h ¼ p=2.
The inclusion and the matrix are described by subscripts s and m,
respectively. We assume the presence of two equal spherical cap
cracks at the north and south poles of the inclusion–matrix inter-
face following [50,55]. The cracks’ extension angles on the inclu-
sion–matrix interface are described by h0. The constituents’
materials are assumed to be linear, elastic, isotropic, and homoge-
nous. The system is subjected to uniaxial tension loading in the
y-direction. The symmetry of the loading conditions with respect
to the y-axis imposes that the displacement in the circumferential
direction is zero and that the radial and the meridional compo-
nents of the displacement are independent of /. We further utilize
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Fig. 1. Schematic depiction of the system geometry and nomenclature.
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