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a b s t r a c t

Peristaltic pumping is a mechanism for transporting fluid or immersed particles in a channel by waves of
contraction. It occurs in many biological organisms as well as in several human designed systems. In this
study, we investigate numerically the peristaltic pumping of an incompressible viscoelastic fluid using
the simple Oldroyd-B model coupled to the Navier–Stokes equations. The pump’s walls are assumed to
be massless immersed fibers whose prescribed periodic motion and flow interaction is handled with
the Immersed Boundary Method. We utilize a new, highly efficient non-stiff version of this method which
allows us to explore an unprecedented range of parameter regimes, nearly all possible occlusion ratios
and Weissenberg numbers in excess of 100. Our numerical investigation reveals rich, highly concentrated
stress structures and new, striking dynamics. The investigation also points to the limitations of the Old-
royd B model, with a potential finite time blow-up, and to the role of numerical regularization.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Peristalsis is the flow that takes places in a channel with flexible
walls due to a series of contraction or expansion waves along the
walls. It is a predominant mechanism of action in a variety of bio-
logical phenomena, from earthworm mobility [28] to gastrointesti-
nal [15] and esophageal transport [2]. Peristalsis is utilized in many
mechanical fluid pumps, often because of its ability to effectively
transport highly viscous fluids and as well as immersed particles.
In both biological and mechanical systems, the fluid internal to
the pump may be non-Newtonian. Such is the case for peristalsis
in the oviduct [6] and uterus [19] where the transported biological
fluid is highly viscoelastic [18].

There are several analytical and numerical studies of peristalsis
[30,17,16,7,27,32,14,35,12,11,39] with increasing emphasis on vis-
coelastic fluids. We focus here on a model used by the recent inves-
tigations of Teran, Fauci, and Shelley [35] and by Chrispell and Fauci
[11]. The fluid model is based on the Stokes [35] or Navier–Stokes
[11] equations coupled with the simple Oldroyd-B (OB) model and
describes a dilute solution of flexible polymeric molecules repre-
sented by Hookean dumbbells [5,13,20]. The Immersed Boundary
(IB) Method [24,25] is employed to model the pump, as done origi-
nally by Fauci [14]. In this IB setting, the pump’s walls are tethered
to anchor points which are set to a prescribed periodic motion to

simulate the waves of contraction and expansion. Teran, Fauci, and
Shelley [35] and Chrispell and Fauci [11] found that there is a marked
difference between the Newtonian and the non-Newtonian fluid
pumping. In particular, the mean flow rate is noticeably affected
by viscoelastic effects. They also noted that extremely strong normal
stresses are generated at the pump’s constriction as the amplitude of
the peristaltic wave relative to the channel width (the so called
occlusion ratio) increases, even for moderate Weissenberg numbers
(the polymer relaxation time relative to the flow’s characteristic
time scale). These large normal stresses present a formidable com-
putational challenge; to accurately preserve the structure of the
pump’s walls during their prescribed periodic motion very stiff
boundary forces must be employed. This induces a severe time step
restriction for explicit IB methods [34,33]. Indeed, the use of an ex-
plicit IB method in [35,11] limited the parameter space ameanable
to simulation to a region consisting of only the first half of the pos-
sible occlusion ratios and to Weissenberg numbers less or equal to
5. In this work, we employ a novel semi-implicit IB method [9,8]
to make possible a computational study that covers nearly all possi-
ble occlusion ratios and Weissenberg numbers in excess of 100. Our
numerical investigation reveals new, striking dynamics which in-
clude highly localized stress structures, a potential finite time
blow-up, symmetry breaking transitions, and the emergence of a
critical occlusion ratio at which the ordering of the mean flow rate
with respect to the Weissenberg number is reversed.

The rest of this article is organized as follows. First, the model is
described in detail in the following section. Then, in Section 3, we
present a new numerical method coupling a viscoelastic fluid solver
to a novel, highly efficient semi-implicit version of the IB method,
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[9,8]. Our numerical results are presented and discussed in Section 4.
Finally, some concluding remarks are given in Section 5.

2. The peristaltic pump and viscoelastic fluid models

We consider a peristaltic pump immersed in a periodic 2D
domain X = [0,1] � [0,1]. We model the peristaltic pump’s walls
as two disconnected sinusoidal curves [14,35,11]

XðtÞ ¼ n;
1
2
þ dðn; tÞ

� �����n 2 ½0;1�
� �

[ n;
1
2
� dðn; tÞ

� �����n 2 ½0;1�
� �

; ð1Þ

where

dðx; tÞ ¼ a
2p
½1þ v sin 2pðn� tÞ�: ð2Þ

Both the spatial and temporal period of the pump is fixed at 1.
As time progresses, the waves of peristalsis move from left to right,
forcing the fluid to flow to the right (in aggregate). The parameter
v represents the occlusion ratio of the pump. The value v = 0 cor-
responds to a straight channel, with no waves of peristalsis, while
v = 1 correspond to a completely occluded channel with the peaks
of each sinusoidal curve meeting at some point along the horizon-
tal line y = 1/2. The parameter a controls the aspect ratio of the
channel. For this work we fix a = 1.5.

We model the interior and exterior of the valve as a dilute,
incompressible OB suspension [5]. The interaction between the
valve and the fluid is captured via the IB Method. The continuous
equations are then

Re
@u
@t
þ u � ru

� �
¼ �rpþr2uþ br � Sþ f; ð3Þ

r � u ¼ 0; ð4Þ
@X
@t
¼ uðX; tÞ; ð5Þ

Sr ¼ �We�1ðS� IÞ: ð6Þ

Here f is a very stiff force acting on the immersed walls binding
the current configuration X to the desired prescribed position gi-
ven by (1). Because of this specified motion, the fluid-immersed
boundary interaction is only one-way. In (3), Re is the Reynolds
number which is a measure of the viscous dissipation relative to
inertial forces. The dimensionless term b specifies the strength of
the viscoelastic force r � S. Here, S is the deviatoric part of the vis-
coelastic stress tensor and evolves according to the OB constitutive
equation, given in (6) [5]. Sr denotes the upper convected deriva-
tive of S:

Sr ¼ dS
dt
þ u � rS�ru � S� S � ruT : ð7Þ

We is the Weissenberg number and is defined as the ratio of the
polymer relaxation time sp and the characteristic time scale of the
flow sf = L/V, where V is the speed of the contractile wave and L is
its wavelength. Alternatively, a Deborah number De could be
defined by De = sp/sf with sf = R/hviwhere R is channel’s constriction
width and hvi is the fluid average velocity [4]. Note that in the limit
as We ? 0 the polymeric stress is fixed as the identity tensor I and
the fluid becomes Newtonian.

Finally, the product bWe can be interpreted as the ratio of the
polymeric viscosity to the solvent viscosity [35]. We fix bWe ¼ 1

2
following [35]. This particular choice is motivated by the experi-
ments in [1] where the solution’s viscosity ratio is 1/2. We choose
the characteristic length scale to be 1, the width of our fluid
domain X and the characteristic time scale we also take it to be
1, the period of the peristaltic pump. We fix the Reynolds number
of our fluid at Re = 1 as in [11]. We have looked at lower Re and
found that for Re 6 1 inertial effects are negligible. Throughout this

work the only fluid parameter we change is the Weissenberg num-
ber We.

We discretize the pump’s walls X as a collection of NB immersed
points {Xj}. The position of these points is not directly prescribed,
rather we construct an artificial force to approximately constrain
the immersed points to their respective positions. For each point
Xj, we define Tj to be the desired target position. We then induce
a force F on immersed points given by

F ¼ rðT� XÞ: ð8Þ

The stiffness coefficient r is a numerical parameter. In the limit as
r ?1 we exactly constrain X to the desired configuration. In
practice, r needs to be a fairly large value. With our semi-implicit
method we can use values of r multiple orders of magnitude larger
than previously possible. For the large values of v and We explored
in this work, we are required to take r = O(106) to maintain the
structure of the pump. This large stiffness coefficient would lead to
prohibitively small time-steps for explicit methods. In our numerical
experiments our choice of r reduces deviations in X from the target
position T to less than 0.0005 units, even when the normal poly-
meric stresses at the pump’s walls rise to values of 1000 and more.

3. Numerical methodology

We briefly overview the numerical method here. It is based on a
semi-implicit discretization of the Navier–Stokes equations given
by

unþ1 � un

Dt
þ un � run ¼ �Dhpnþ1 þ Lhunþ1 þ f; ð9Þ

Dh � unþ1 ¼ 0; ð10Þ
Xnþ1 � Xn

Dt
¼ S�nunþ1: ð11Þ

Here a superscript n denotes a numerical approximation taken at
the time nDt and Dt is the timestep. The spatial operators Dh and
Lh are the standard, second order approximations to the gradient
and the Laplacian, respectively. The convection term un � run is
handled separately via a third-order essentially non-oscillatory
(ENO) scheme [31]. The force F in (8) is defined at the immersed
boundary only and has to be spread onto the surrounding Eulerian
grid points. Likewise, the velocity field is not given at the immersed
boundary, so we must interpolate. To achieve this spreading and
interpolation we define the adjoint operators:

ðSnGÞðxÞ ¼
X
s2GB

GðsÞdhðx� XnðsÞÞhB; ð12Þ

ðS�nwÞðsÞ ¼
X
x2GX

wðxÞdhðx� XnðsÞÞh2
; ð13Þ

known as the spreading and interpolation operators, respectively.
Here dh(x) � dh(x)dh(y) is an approximation to the two-dimensional
Dirac delta distribution and dh is given by

dhðrÞ ¼
1

4h 1þ cosðpr
2hÞ

� �
if jrj 6 2h;

0 otherwise:

(
ð14Þ

We refer to these operators as lagged because the interface con-
figuration Xn is used instead of the future configuration Xn+1.

Utilizing Sn and S�n we now specify the form of f in (9):

f ¼ rSnðTnþ1 � Xnþ1Þ þ bDh � Sn; ð15Þ

which incorporates both the artificial force on the immersed points,
as well as the additional force coming from the polymeric stress.
We thus consider the polymeric stress fixed as we update the fluid.
Once we have an updated fluid velocity Un+1 we will then calculate
an updated value for the stress Sn+1.
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