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a b s t r a c t

This work compares two modeling approaches for corrugated laminates. Both models use a unit cell and a
generalized plane-strain approach in order to determine a substitute plate model. The first model is based
on a linear thin-shell theory and the second model uses a self-programmed finite element program with
planar elements. The comparisons show the differences of the models as well as the limits of the shell
theory approach. Furthermore, the realizable anisotropy of corrugated laminates which is important
for morphing wing applications is investigated.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of developing new aircraft, morphing wings are a
current research topic at several research institutions. In order to
realize a morphing wing the usage of a flexible skin is required.
Thill et al. [1] summarized in a detailed literature review different
design possibilities for such flexible skins. Gandhi and Anusonti–
Inthra [2] made some studies on the requirements of the skin. Both
investigations showed that a highly anisotropic structure has to be
used, as the skin has to be compliant in the chordwise direction
and stiff in the spanwise direction.

A possible design for the skin is the usage of corrugated lami-
nates. The corrugations increase the stiffness in one direction,
whereas the stiffness decreases in the perpendicular direction.
Experimental work on corrugated laminates and the derivation of
simple relations for extensional and bending stiffnesses were done
by Yokozeki et al. [3]. Thill et al. focused on the application of cor-
rugated laminates to the trailing edge area of a wing. An overview
over the performed investigations can be found in [4,5]. On the one
hand there were conducted several experimental studies on the
mechanical properties of corrugated laminates which included
comparisons to simple formulas for extensional and bending stiff-
nesses [6,7]. These studies dealt with the consideration of influence
parameters like corrugation geometry, laminate thickness or mate-
rial. A more detailed analysis based on nonlinear finite element cal-
culations was used to explain the exceptional behavior of
trapezoidal aramid/epoxy laminates undergoing large displace-
ments [8]. On the other hand also the aerodynamics was investi-
gated by wind tunnel tests and computational fluid dynamics

calculations [9–11]. These studies showed that a suitable choice
of corrugation shape, period length, amplitude and Reynolds num-
ber can decisively reduce the disadvantages of the non-smooth
surface. Xia et al. investigated the aerodynamic performance of
corrugated skins – where most part of the considered standard
wing profile was covered by a corrugated structure – by numerical
and experimental methods [12].

Two complete models for corrugated laminates that are consid-
ering a substitute plate model with all relevant load cases are
existing [13–16]. The first model deals with an analytical thin-shell
theory approach with closed-form solutions for the substitute stiff-
nesses and strain limits for symmetric and balanced cross-ply lam-
inates [13,14,16]. Due to the used linear thin-shell theory aspects
like geometrical nonlinearities or influence of thick laminates can-
not be considered. The second approach [15,16] uses a plane finite
element (FE) which was derived on the assumption of a general-
ized plane-strain state. This model also allows the complete calcu-
lation of the substitute stiffness matrix. A general laminate with a
general corrugation geometry can be considered. Investigations on
the influence of the corrugation geometry can be found in [16,17].
Xia and Friswell [18,19] recently presented a model which allows
to calculate the stiffnesses of the main diagonal. But they used sev-
eral simplifications like the neglect of the Poisson ratio. Besides
these models, there are existing several models based on orthotro-
pic plate models [20–26]. However, these models are built for iso-
tropic materials.

In our previous work [15] discrepancies for the coupling stiff-
nesses between the analytical model and the FE approach were re-
vealed for certain fiber orientations of unidirectional laminates.
The differences between the two models lead to the present work.
The main modeling ideas will be presented in an abbreviated form
within Section 2. A comprehensive description of all modeling de-
tails of both models can be found in [16]. A comparison of the two
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models will then be shown within Section 3. The focus lies on the
influence of the thickness-to-radius ratio and on occurring devia-
tions between both models in this context. Section 4 deals with
the realizable anisotropy depending on geometry and on material
anisotropy of the base material. This will deliver insight into the
potential anisotropy range that can be used for applications such
as morphing skins.

2. Modeling approach

As a corrugated laminate is a periodic structure with many
repeating sections, it is advantageous to analyze only one repre-
sentative unit cell which can be seen in Fig. 1. This approach is va-
lid as long as the considered structure is large enough so that edge
effects can be neglected. Thereby, the usage of a unit cell has two
main advantages. Firstly, such an approach allows to investigate
the local behavior of displacements, strains or stresses. A rather
small model is then sufficient for such investigations. Secondly,
the unit cell can be used to homogenize the corrugated structure
so that it can be represented by means of a substitute plate model.
This helps to reduce the computational effort for simulations of
large structures.

Fig. 1 illustrates the parameterization of the unit cell and the
coordinate system definition. The considered corrugated structure
consists of two circular segments. In general, also other corruga-
tion patterns like trapezoidal or triangular ones are possible. The
unit cell is infinitely long in x direction, as edge effects are ne-
glected. In y direction the unit cell comprises of one period length
P. The circular geometry of the unit cell is dependent on the period
length P and the half-amplitude c. These two parameters then give
the radius R and the angle w0 which will also be used for a more
concise notation in the following sections.

2.1. Generalized plane-strain approach

Due to the mentioned simplification with respect to the
x direction, the strains and stresses are not a function of x.
Whereas, the displacements can be a function of x. This is also
known as a generalized plane-strain state [27]. The general
equilibrium equations in cartesian coordinates can accordingly
be simplified to:

syx;y þ szx;z ¼ 0
ry;y þ szy;z ¼ 0
syz;y þ rz;z ¼ 0

ð1Þ

The displacement field in cartesian coordinates of Eq. (2) is
compatible with the equilibrium equations.

ux ¼ uxðy; zÞ þ x�̂0
x þ zx�̂1

x þ
1
2
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xy
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1
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xy

ð2Þ

Thereby, the terms containing �̂j
i represent prescribed deforma-

tions. These comprise uniform strain �̂0
x in x direction, uniform

bending �̂1
x as well as twist �̂1

xy about the y axis. With the linear
kinematical relations the strains in cartesian coordinates can be
determined:

�x ¼ ux;x ¼ �̂0
x þ z�̂1

x

�y ¼ uy;y

�z ¼ uz;z

cyz ¼ uy;z þ uz;y

cxz ¼ ux;z

cxy ¼ ux;y þ z�̂1
xy

ð3Þ

2.2. Modeling with substitute plates

The already mentioned homogenization of corrugated lami-
nates can be made with the help of a general substitute plate sim-
ilar to classical lamination theory [28] which is usually used for flat
laminated plates:
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where Ni are line loads and where Mi are line moments. These can
be determined by the product of the ~A~B~D substitute stiffness matrix
and the according prescribed membrane strains �̂0

i and curvatures
�̂1

i . The tilde indicates that the eAeB eD matrix represents the
homogenized behavior of the corrugated laminate. If the half-
amplitude c is equal to zero, the stiffness matrices ABD and eAeB eD
coincide.

Six load cases are necessary in order to determine the entries of
the substitute stiffness matrix. Fig. 2 illustrates the load cases.
Thereby, the undeformed unit cell is colored gray and the de-
formed structure is indicated by black solid lines.

For each load case only the respective prescribed membrane
strain or curvature is unequal to zero. The load cases one and
two elongate the unit cell in x direction with the membrane strain
�̂0

x and in y direction with the membrane strain �̂0
y , respectively. The

shear strain �̂0
xy is applied for load case three. The load cases four

and five bend the unit cell about the y axis by the constant curva-
ture �̂1

x and about the x axis by the curvature �̂1
y , respectively. Final-

ly, the unit cell is twisted by the curvature �̂1
xy about the y axis for

load case six. Additionally to these boundary conditions,
periodicity conditions have to be considered due to the unit cell
approach. Thus, both ends of the unit cell are subjected to the same
deformations. For the analytical shell theory approach also
continuity conditions between the two circular halves of the unit
cell have to be used, as the unit cell consists of two circular
segments.

By dividing the reactions Nx;Ny;Nxy;Mx;My and Mxy by the
according prescribed membrane strain or curvature the substitute
stiffness matrix entries can be determined:

eAij ¼
Nj

�̂0
i

; i; j ¼ 1;2;6 or x; y; xy

eBij ¼
Mj

�̂0
i

; i; j ¼ 1;2;6 or x; y; xy ð5Þ
Fig. 1. Parameterization of the unit cell (adapted from [16]).
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