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a b s t r a c t

The stress–strain relationship for Particle Reinforced Metal Matrix Composites (PMMCs) in the nonlinear
regime has been frequently assessed by means of the Modified Secant Homogenization Method. This non-
linear Homogenization uses a Linear Elastic Homogenization scheme to calculate the Secant Compliance
tensor of the composite in terms of the known Secant Compliance tensors of the composites’ constituent
phases.

The subject of the present work is the development of a particular implementation of the Modified
Secant Homogenization Method for the case of PMMCs using, as the required underlying Linear Elastic
Homogenization scheme, the Halpin–Tsai equation. The developed implementation, valid for PMMCs
of geometrically isotropic microstructure, results in a relatively simple iterative procedure for the estima-
tion of the nonlinear macroscopic stress–strain response. It has only two explicit parameters: the rein-
forcement volume fraction F and the ‘s’ parameter of the Halpin–Tsai equation, which carries
implicitly information about particle aspect ratio and orientation.

The proposed scheme is applied to the prediction of the uniaxial hardening curve and to the study of
the influence of macroscopic hydrostatic stress on composite’s yield.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Particulate Reinforced Metal Matrix Composites (PMMCs) have
been the subject of significant research interest during the last
sixty years. These materials are usually constituted by an
elasto-plastic metal matrix as a continuous phase in which elastic
particles are embedded. Particles are considered a discontinuous
‘‘reinforcement’’, as they are normally chosen to be stiffer than
the matrix. For matrix, alloys of aluminum, magnesium or titanium
can be used, while particles are generally made of ceramic materi-
als such as silicon carbide or alumina.

The mechanical behavior of PMMCs depends of the constitutive
properties of the constituent phases and also of microstructural
features such as particle volume fraction, particle shape, particle
orientation and spatial distribution of the particles within the ma-
trix. A large number of methods and models to study the mechan-
ical behavior and properties of PMMCs have been proposed. They
can be grouped into four broad families: methods based on
mean-field theory, methods based on homogenization by asymp-
totic expansion, variational methods, and methods based on cell-
analysis. As the literature in the field is very extensive, a full biblio-
graphic overview is out of the scope of the present work.

Consequently, only a small set of references are mentioned here,
involving review books and some of the relevant original papers.
General review books about PMMCs are [1–4]. Important books
from the perspective of micromechanical analysis are [5–8].

Although the context of the present work is in the mean field
approach, tangentially some aspects of cell modeling and varia-
tional bounds are touched. In mean field approaches, it is assumed
that volume averages of the local stress and strain tensor fields in-
side a Representative Volume Element (RVE) of material are valid
representative measures of the macroscopic stress and strain ten-
sors. In this way, effective mechanical properties of the composite
are defined in the form of a fourth order compliance (or stiffness)
tensor which relates the average stress with the average strain.
In linear elasticity, these constitutive tensors of effective elastic
properties are independent of strain. In the nonlinear regime, how-
ever, the effective constitutive tensors change with macroscopic
stress or strain. As a result, the characterization of the effective
mechanical behavior has to be made in terms of a secant or tangent
compliance (or stiffness) tensor.

Because it has been shown that tangent approaches tend to pre-
dict a stiffer response of the composite (see for instance [5,9,10]),
the stress–strain relationship for PMMCs in the nonlinear regime
has been frequently assessed in the literature by means of a Secant
Homogenization Method, usually in its Modified form by Suquet
[11], who also showed the connection of the method with the non-
linear variational estimates of Ponte Castañeda [12]. Application
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examples of the Modified Secant Method can be found in [13–15].
This Homogenization Method for the nonlinear regime uses a Lin-
ear Elastic Homogenization scheme to calculate the Secant Compli-
ance tensor of the composite in terms of the known Secant
Compliance of the constituent phases.

It is clear, thus, that an implementation of the Modified Secant
Homogenization scheme requires the availability of a suitable Lin-
ear Elastic Homogenization scheme. A large number of such
schemes have been proposed in the literature for composites rein-
forced with spherical or ellipsoidal particles which are, generally,
based on estimations of the stress localization tensor made using
the well known Eshelby tensor [16], as in the Mori–Tanaka model
[17,18], among others. These Linear Elastic methods cannot rigor-
ously be used, however, for non-ellipsoidal particles, or particles
with complex shape, for which no Eshelby tensor is known or eas-
ily estimated.

Zahr Viñuela and Pérez-Castellanos [19] proposed a Linear Elas-
tic Homogenization method for PMMCs where the reinforcing
phase consists of particles of varying aspect ratios embedded in
an elastic–plastic matrix. This approach is based on computational
micromechanics in the form of multi-particle cell modeling, and
can be summarized as follows: Multi-particle cells representing
geometrically isotropic microstructural scenarios were built and
analyzed by Finite Element for a range of values of particle volume
fraction F; particles with edges and irregular shape were modeled
as prismatic particles in both, random and controlled orientation.
The numerical results provided values of homogenized elastic con-
stants in excellent agreement with its experimentally measured
counterparts, for a composite material with an aluminum alloy
matrix reinforced with SiC irregular particles. Subsequently, the
authors used the well known Halpin–Tsai expression [20] – in a
modified form proposed by Halpin and Kardos [21] – as a fitting
expression for computationally obtained homogenized elastic con-
stants. That work provided for a set of values of the Halpin–Tsai ‘s’
parameter for different microstructural scenarios: some of these
are improved ‘s’ values applicable to microstructural scenarios al-
ready analyzed by Halpin and Kardos, while other represent a com-
pletely new set of values applicable to microstructural scenarios
non-covered previously in the literature, most notably, the geo-
metrically isotropic cases of randomly oriented prismatic particles
with large, small and unit particle aspect ratio. The main reason for
Zahr and Pérez-Castellanos to use prismatic particles instead of
ellipsoidal ones in their multi-particle cell analysis is that many
real particulate composites contain particles of irregular shape
with ‘‘hard’’ edges, so prismatic particles were considered to be a
better approximation than spherical or ellipsoidal. The Halpin–Tsai
equation proved a useful and easy to calibrate fitting function for
the problem of homogenization of elastic constants in linear
elasticity.

The subject of the present work is the development of a partic-
ular implementation of the Modified Secant Homogenization
Method for the case of PMMCs using, as the required underlying
Linear Elastic Homogenization scheme, the scheme proposed by
Zahr and Pérez-Castellanos. The proposed implementation results
in an iterative procedure for the estimation of the nonlinear mac-
roscopic stress–strain response in which there are only two explicit
parameters: the reinforcement volume fraction and the ‘s’ param-
eter of the Halpin–Tsai equation which, in turn, carries implicitly
the information of particle aspect ratio and orientation.

The method is then applied to the prediction of the uniaxial
hardening curve of a PMMC characterized by a geometrically iso-
tropic microstructure where the reinforcing particles are randomly
oriented inside the matrix, and for which, several stress–strain
curves are obtained for different volume fractions. The influence
of the macroscopic hydrostatic and Mises stresses on the yield con-
dition of the composite is also studied.

2. The modified secant model

In the present section, a summary of the Secant Homogeniza-
tion Method by Suquet is presented in a notation suitable to the
particular kind of materials considered in this work, namely
PMMC’s made up of particles embedded in a metal matrix. For
the subsequent development, the following three assumptions will
be used and its consequences described:

i. Reinforcing particles follow a constitutive behavior which is
linear, elastic and isotropic. This discontinuous reinforce-
ment represents the ‘‘hard’’ phase of the composite.

ii. The matrix phase, which represents the continuous and
‘‘soft’’ phase, has a nonlinear constitutive behavior, with
plastic strain and also J2 isotropic hardening. This constitu-
tive behavior will be represented using Deformation Theory
of Plasticity (a secant theory using total strains rather than
incremental strains). Due to this, the analysis is restricted
to proportional loading.

iii. The spatial distribution of particles within the matrix is geo-
metrically isotropic.

According to [19], as the constitutive behaviors of the constitu-
ent phases is isotropic, and as the spatial distribution of the rein-
forcing particles within the matrix shows geometric isotropy, the
constitutive behavior of the composite can also be considered iso-
tropic, showing – as the matrix – plastic strain and isotropic strain
hardening. It must be noted, however, that only the ‘‘isotropic’’ fea-
ture of the hardening of the matrix phase is transferred to the com-
posite. The ‘‘J2’’ aspect of the isotropy of the matrix hardening does
not transfer to the composite, as will be shown in subsequent
sections.

In what follows, inertial and body forces are neglected. In this
situation, let V be a Representative Volume Element (RVE) of the
composite material, which results from the union V = U(Vr), where
r = matrix or particles, Vm and Vp being non-intersecting regions of
V occupied, respectively, by matrix and particle materials. The full
problem to be solved is formed by the set of Eqs. (1)–(5), where the
variables are as follows: r, e and u are the stress, strain and dis-
placement fields, respectively, inside the RVE, while R and e are
the representative measures of the macroscopic or composite’s
stress and strain tensors.

It is worth noting that Eqs. (1)–(3) represent a local problem,
while Eq. (4) represents a homogenization problem associated to
the local problem, with Eq. (5) being a link between both, the local
and global problems, as the brackets in this equation represents
volume averages over V.

Local internal equilibrium : rrðxÞ ¼ 0 x 2 V ð1Þ

Strain—displacement compatibility :

eðxÞ ¼ 1
2
fr � uþ ðr� uÞTg x 2 V ð2Þ

Local constitutive equation :

eðxÞ ¼ GrðrðxÞÞ x 2 Vr with r ¼ matrix; particles ð3Þ

Homogenization : e ¼ GðRÞ ð4Þ

Link between local and macroscopic variables :

R ¼ hriV ; e ¼ heiV ð5Þ

In Eq. (3), Gr is a function which represents in general the constitu-
tive behavior of each constituent phase. The particular form of the
function Gr which relates the stress and strain tensors in each point
inside each phase is considered a data for the problem. Also, it must
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