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a b s t r a c t

An important class of gels are those composed of a polymer network and fluid solvent. The mechanical
and rheological properties of these two-fluid gels can change dramatically in response to temperature,
stress, and chemical stimulus. Because of their adaptivity, these gels are important in many biological
systems, e.g. gels make up the cytoplasm of cells and the mucus in the respiratory and digestive systems,
and they are involved in the formation of blood clots. In this study we consider a mathematical model for
gels that treats the network phase as a viscoelastic fluid with spatially and temporally varying material
parameters and treats the solvent phase as a viscous Newtonian fluid. The dynamics are governed by a
coupled system of time-dependent partial differential equations which consist of transport equations
for the two phases, constitutive equations for the viscoelastic stresses, two coupled momentum equa-
tions for the velocity fields of the two fluids, and a volume-averaged incompressibility constraint. We
present a numerical method based on a staggered grid, second order finite-difference discretization of
the momentum equations and a high-resolution unsplit Godunov method for the transport equations.
The momentum and incompressibility equations are solved in a coupled manner with the Generalized
Minimum Residual (GMRES) method using a multigrid preconditioner based on box-relaxation. We pres-
ent results on the accuracy and robustness of the method together with an illustration of the interesting
behavior of this gel model for the four-roll mill problem.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

An important class of gels are those composed of a polymer net-
work immersed in a solvent. Because of their multiphase and mul-
tiscale nature, such gels exhibit a number of unique behaviors. In
addition to stress due to deformations, these gels may exhibit
osmotic and active stresses. Osmotic stress, or swelling stress,
results from interactions between the solvent and polymer mole-
cules. Active stresses arise in some biological gels, such as actomy-
osin, which are crosslinked with molecular motors that convert
chemical energy into mechanical work. Additionally, when the
polymer network is undergoing polymerization and depolymeriza-
tion, the rheology of the mixture can be highly variable. In many
biological gels such as biofilms, blood clots, mucus, and cytoplasm,
polymerization/depolymerization and active/osmotic stresses are
regulated as part of their biological function. An essential compo-
nent in the study of these complex processes is good numerical
methods to solve the equations that describe their mechanics.

In many instances, a gel is not adequately described as a single
continuous medium. For example, during gel swelling the network
moves outward while the solvent moves inward. Modeling the
mechanics of gels requires a description beyond a single velocity
field and single stress tensor. The two-fluid model is a widely used
approach to describe gel mechanics [1,2]. In this model, both net-
work and solvent coexist at each point of space, and each phase
(network and solvent) is modeled as a continuum with its own
velocity field and constitutive law. The coupled system of partial
differential equations that describe the gel presents significant
challenges both for analysis and for numerical simulation, and is
therefore not well studied. Among the challenges posed by a gel
model of this type are the need to determine two velocity fields
and a pressure coupled through the two momentum equations
and the incompressibility constraint. Another arises if the gel is
not homogeneous in which case gel properties, including its elastic
modulus, may vary spatially and temporally.

The appropriate rheological description of the network phase
depends on the type of gel as well as the time scale of the problem.
Gels with permanent crosslinks are usually described as elastic sol-
ids. If the crosslinks form and break dynamically, then the network
is better described as a viscoelastic fluid or even as a viscous fluid,
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depending on the relative time scales of the deformation and the
crosslinking. A model which captures all of these behaviors is the
transient network model [3,4], which in its simplest form is like
rubber elasticity with formation and rupture of crosslinks. In the
limit that the rupture rate goes to zero, the material becomes a
neo-Hookean elastic solid, and in the limit of very fast formation
and breaking, the material becomes a viscous fluid. Because of its
ability to describe such diverse materials behaviors, this is the type
of model we consider in this paper. For other types of models of the
dynamics of viscoelastic gels see, for example, [5–7] and the refer-
ences therein.

When the polymer concentration is uniform, and the formation
and rupture of crosslinks is in equilibrium, the equation for the
stress tensor is equivalent to the upper convected Maxwell equa-
tion. We include an additional viscosity within the network, which
makes the network an Oldroyd-B fluid. In this paper, we use a ver-
sion of the model in which polymer concentration is variable, and
the kinetics of link formation are not taken to be in equilibrium.
This adds an extra equation for the link density. The elastic modu-
lus of the network is proportional to the link density and so it too
evolves in time [8].

Previously we developed algorithms for simulating the equa-
tions of gel mechanics using the two-fluid model in which the net-
work and solvent were modeled as viscous fluids without inertia
[9–11]. In this paper we extend this work to the case when the net-
work is modeled as an Oldroyd-B fluid and inertia has an effect.
The inertia of the fluid can play an important role in applications
where the gel is in contact with a rapidly moving Newtonian fluid
[12]. We use a conservative, high-resolution unsplit Godunov
method on a staggered grid for treating the scalar equations
describing the transport of the network and solvent volume frac-
tions. We extend this method to handle the tensor equations for
the viscoelastic stresses and elastic modulus. There are similarities
of this method with previously developed techniques for treating
single-phase viscoelastic fluids [8,13,14]. We use a second order fi-
nite-difference discretization of the momentum and incompress-
ibility equations and adapt our iterative method from [9] to
handle nonzero Reynolds number flows. This iterative method uses
a Krylov subspace method together with a multigrid precondition-
er for solving this coupled set of equations without splitting. We
find that the adapted method is efficient and robust.

We present numerical experiments showing that our computa-
tional technique achieves second order accuracy in space and time
for smooth solutions and is stable provided an appropriate CFL-
type condition is satisfied. The experiments also show that our
method can handle sharp material interfaces without problems,
and that it is robust over a wide range of parameters, from cases
where the gel behaves like a viscoelastic fluid to others in which
it behaves like a viscoelastic solid.

The remainder of the paper is organized as follows. In Section 2
we give a brief introduction to the two-fluid, viscoelastic gel model.
In Section 3, we describe the computational method for simulating
the gel model. In Section 4, we present several numerical examples
including refinement studies illustrating the accuracy of the meth-
od and results from simulations involving strongly elastic materi-
als and sharp interfaces between material parameters. In these
numerical examples the flow is driven by a background force cor-
responding to the four-roll mill problem. We conclude the paper
with some remarks in Section 5 on future enhancements to the
model and computational method that will be considered.

2. Gel model

Our intention in this section is to give a brief introduction to the
gel model considered in the present study. A more thorough

derivation and discussion of this model and more general gel mod-
els can be found in the recent reviews [1,2] and the references
therein.

We consider a gel composed of two materials, a polymer net-
work and a fluid solvent. Each point in space is assumed to be
occupied by a mixture of network and solvent, which is described
by the volume fractions of the two different phases. Each material
moves with its own velocity and the total amount of gel is assumed
to remain constant. For the model considered in this study, the
densities of the two materials are equal and set to a constant value,
i.e. the networked material is neutrally buoyant. With these
assumptions, conservation of mass leads to the following two
equations for the volume fractions:

hsð Þt þr � ushsð Þ ¼ 0 ð1Þ
hnð Þt þr � unhnð Þ ¼ 0 ð2Þ

where hn, and hs ¼ 1� hn are the respective volume fractions of the
network and solvent, and us and un are the respective transport
velocities. Adding Eqs. (1) and (2) and using hs þ hn ¼ 1 reveals that
the volume averaged velocity is incompressible:

r � ðhsus þ hnunÞ ¼ 0: ð3Þ

The transport velocities are determined by Newton’s second
law, which in this case are described by the solvent and network
momentum equations

q hsusð Þt þr � hsususð Þ
� �

¼ �hsrpþr � hsr
s;v

� �
� nhshn us � unð Þ; ð4Þ

q hnunð Þt þr � hnununð Þ
� �

¼ �hnrpþr � hnr
n;v

� �
� nhshn un � usð Þ þ r � hns

� �
�rW:

ð5Þ

The solvent momentum equation reflects our assumption that
the solvent behaves as a Newtonian fluid subject to a viscous force

r � hsrs;v
� �

and a pressure force hsrp, and that it is also acted upon

by a drag force nhshn un � usð Þwhen the solvent and polymer veloc-
ities differ. Similarly, the network is subject to viscous, pressure,

and drag forces given, respectively, by r � hnrn;v
� �

, hnrp, and

nhshn us � unð Þ, as well as to two additional forces. One is a visco-

elastic force r � hns
� �

due to deformation and restructuring of

the network, and the other is a chemical pressure (or osmotic pres-
sure) force rW arising from chemical interactions due to the pres-
ence of the network. In these equations, q is the density of the two
fluids and n is the drag coefficient.

The viscous stresses for both materials are the standard ones for
a Newtonian fluid

rs;v ¼ ls rus þruT
s

� �
þ ðksr � usÞd ð6Þ

rn;v ¼ ln run þruT
n

� �
þ ðknr � unÞd ð7Þ

where ls;n are the shear viscosities and ks;n þ 2ls;n=d are the bulk
viscosities of the solvent and network ðd is the spatial dimension).
For this paper we assume that the chemical pressure is that used
in Flory–Huggins polymer theory [15, p. 143]

WðhnÞ ¼ w0ðn1 logðhnÞ � n2 logð1� hnÞ þ vð1� 2hnÞÞ; ð8Þ

where w0 > 0, n1, n2, and v are constants. The constant v affects the
amount of mixing of polymer and solvent. In this study, we set
n1 ¼ n2 ¼ 1 and v ¼ 2. With this choice of parameters, the chemical
pressure favors some mixing and penalizes full phase separation of
the gel.
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