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a b s t r a c t

Through-thickness modeling of laminated composites using a displacement-based isogeometric layer-
wise theory is presented. Layerwise theories provide accurate predictions of the three-dimensional stress
states that are of prime importance in structural design. This is in sharp contrast to the class of equiva-
lent-single-layer theories that yield no or limited information of three-dimensional stress states. The key
idea of layerwise theories is to distinguish and separate the functions of approximation employed in the
in-plane and out-of-plane directions. The rationale behind this choice emanates from the underlying
physics, due to the balance of linear momentum and continuity of traction, the function describing the
transverse displacement field should be C0-continuous at the interface between plies of different fiber
angle orientation. The latter condition can be naturally facilitated through conscious use of isogeometric
refinement schemes. Finally, a multiple model analysis is introduced. The aim is to demonstrate the use
of the different models within predefined regions of a single laminate. The multiple model analysis con-
cept is employed to simulate laminates with existing delaminations. The proposed models are verified
considering laminated composite plates. The numerical results confirm the accuracy of the proposed
models and shown that the isogeometric layerwise model outperforms its Lagrange polynomial-based
counterpart.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composite structures are increasingly used in a
wide range of industries. To date, various methods have been
proposed for the analysis of composite laminates, see e.g. the
classical references by Carrera [1] or Reddy [2]. Depending on the
displacement and/or stress expansions through the laminate thick-
ness, two main categories of theories can be distinguished: the
equivalent-single-layer (ESL) and the layerwise (LW) theories.
Equivalent-single-layer theories can be further classified into clas-
sical shell formulations and homogenization-based approaches.
Classical shell formulations reduce a three-dimensional continuum
problem to a two-dimensional one by expanding the displacement
field as a linear combination of predefined or known functions of
the thickness co-ordinate and integrating the constitutive law
through the thickness either analytically or numerically [3]. Alter-
natively, stiffness properties may be homogenized through the
thickness of the laminate without reducing the geometric dimen-
sion of the problem. Although ESL theories may be adequate for

describing the behavior of thin composite shells, they typically fail
to capture (accurately) the complete three-dimensional stress field
at the ply level in moderately thick, and thick laminates. This defi-
ciency is primarily associated with the fact that transverse strain
components are incorrectly assumed to be continuous across the
interface of dissimilar materials, which entails non-physical local
discontinuity of the transverse stresses.

In contrast to ESL theories, layerwise techniques assume sepa-
rate displacement field expansions within each layer. Following
equilibrium considerations, the transverse displacement compo-
nent is defined to be C0-continuous at ply interfaces and thereby
yield a more accurate description of the complete stress state. In
most displacement-based layerwise models [4–10], C0-continuity
of the displacement field across layer interfaces is imposed
through constructing elaborate displacement functions or through
adding constraint equations at layer interfaces. For instance, in ref-
erence [8] each layer is modeled as an independent plate, then the
compatibility of displacement components at layer interfaces are
imposed through the use of Legendre polynomials. Alternatively,
one-dimensional through the thickness Lagrangian finite elements
are used to approximate three components of the displacement
field which automatically enforces C0-continuity conditions at
layer interfaces, see e.g. [11–13]. The latter approach results in a
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continuous in-plane and discontinuous transverse strain field,
allowing for the possibility of continuous transverse stresses at
the layer interfaces. Furthermore, compared to conventional 3-D
finite element models, the layerwise model is computationally
more efficient while retaining the same modeling capabilities [12].

It is interesting to note that equivalent-single-layer and layer-
wise theories may be successfully casted into a unified framework
making them more practical to use, see e.g. [14,15]. The non-evi-
dent choice between various ESL and LW models is primarily driven
by the geometry of the part, the material properties, or even the
stacking sequence of the laminate. Equivalent-single-layer models
tend to require less modeling effort from the designer and in most
cases offer reduced computational times. Usually, these benefits
come at the expense of incomplete or even inaccurate results, ex-
cept for the model developed in [15]. In contrast, layerwise models
provide more accuracy and are computationally more intense. Con-
sequently, combining these two types of models should allow us to
solve structural problems using a reasonable amount of computa-
tional resources at a reduced cost. This method is often denoted
multiple model analysis [2], and it is a general case of the commonly
used simultaneous global–local strategy [16]. Here global refers to
the entire structure modeled using an ESL theory except for a set
of critical subdomains described by a layerwise model. In multiple
model analysis, the main difficulty often lies in the coupling of
incompatible meshes and/or different mathematical models, i.e.
to maintain the kinematic compatibility and continuity of traction
at the boundaries of adjacent regions. In order to address this diffi-
culty, Whitcomb and Woo have [17,18] developed an iterative
method to establish the force equilibrium conditions at global–local
boundaries. In some other works, multipoint constraints [19] or
transition elements [20] are used to connect different mathematical
models. Reddy et al. [21,16] have proposed a more robust global–lo-
cal analysis method which is called the variable displacement field
method, so that in a given region of domain, all appropriate part of
the displacement field can be invoked. Displacement continuity is
enforced between different types of regions.

Isogeometric analysis, introduced by Hughes et al. [22], is a
novel concept in computational mechanics aimed at unifying
computer aided design (CAD) and finite element analysis (FEA).
In contrast to classical FEA where the geometry and the unknown
solution field(s) are approximated with Lagrange polynomials,
isogeometric analysis (IA) employs the basis functions used to
describe the geometry to approximate the physical response in
an isoparametric sense. The accuracy and efficiency of the isogeo-
metric paradigm has been validated by a number of researchers,
see e.g. [23–26].

To date only few references can be found that employ the iso-
geometric concept to investigate composite laminates [27–32].
Most of these papers are based on classical lamination theory
(CLT) or first-order shear deformation theory both belonging to
the class of ESL methods. Recently, Thai [33] proposed an isogeo-
metric layerwise theory in which a first-order shear deformation
theory is used in each layer, and the displacement continuity at
layer interfaces is imposed.

In this paper, we focus on through-the-thickness modeling of
laminated composites in the framework of higher order and higher
continuity NURBS. The superiority of isogeometric paradigm in the
modeling of composite laminates is demonstrated through several
numerical examples in the state of cylindrical bending. In particu-
lar, we exploit the unique k-refinement capabilities of isogeometric
analysis to reveal the method’s potential for models based on the
proposed layerwise theory. Next, an isogeometric based multiple
model method is presented and an error study using several differ-
ent parameters is carried out. Finally, we investigate a multiple
model that includes delamination in a predefined region.

The remaining part of this paper is built up as follows. Funda-
mentals of non-uniform rational B-splines and isogeometric analy-
sis are presented in Section 2. The details and verification of
isogeometric layerwise model, multiple model method and the
delamination modeling are presented in Sections 3 and 4, respec-
tively. Finally, conclusions are given in Section 5.

2. NURBS and isogeometric analysis

2.1. Non-uniform rational B-splines

An open knot vector, N, is a non-decreasing sequence of real
numbers defined as:

N ¼ fn1 ¼ � � � ¼ npþ1 ¼ 0; npþ2; . . . ; nn; nnþ1 ¼ � � � nnþpþ1 ¼ 1g; ð1Þ

where ni, with i = 1, 2, . . ., n + p + 1, p, and n denote a knot, the de-
gree, and number of the basis functions, respectively. In essence,
the parametric space, defined by the knot vector, is subdivided by
the knots into knot spans, i.e. [nj, nj+1). Furthermore, repeating start-
ing and end knots in Eq. (1) ensure endpoint interpolation of the de-
fined geometry.

Given the knot vector, one can introduce B-spline functions
using the Cox-de Boor recursion formula [34]. The recursion starts
with degree p = 0 basis functions which are defined as:

Ni;p¼0ðnÞ ¼
1 if ni 6 n < niþ1;

0 otherwise;

�
ð2Þ

where Ni, p=0 is the ith piecewise constant basis function and n 2 [0,
1] is the variable of parametrization. Basis functions of degree p > 0
are constructed as:

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ: ð3Þ

A pth degree NURBS curve, c(n), is furnished as [35]

cðnÞ ¼
Xn

i¼1

PiRi;pðnÞ; ð4Þ

where Pi is a control point and Ri, p(n) designate a rational basis
function defined as:

Ri;p ¼
Ni;pðnÞwiPn
j¼1Nj;pðnÞwj

: ð5Þ

The symbol wi in Eq. (5) denotes the weight associated with the ith
control point.

Let us now assume that the two (distinct) knot vectors N1 and
N2 are given, following Eqs. (1) and (2) one may define n1 and n2

basis functions of degree p1 and p2, respectively. Making use of
the tensor product scheme, the NURBS surface, s(n, g), can be writ-
ten as:

sðn1; n2Þ ¼
XK

I¼1

PIRIðn1; n2Þ ¼ PT r; ð6Þ

where K = n1 � n2, PI, and RI(n1, n2) denotes the number of rational
basis functions, the control points comprised in the control net,
and the bivariate rational basis functions. The symbols P 2 RK�d,
with d = 2, 3 denoting the spatial dimensions, and r 2 RK in Eq.
(6) represent the control point matrix and the interpolation vector
respectively. For notational brevity, we introduced a single index
notation in Eq. (6). For instance, the bivariate NURBS basis function,
which is constructed by the tensor product of one dimensional
shape functions, is defined as:

RIði1 ;i2Þ : Rp1 ;p2
i1 ;i2
ðn1; n2Þ ¼

Ni1 ;p1
ðn1ÞNi2 ;p2

ðn2Þwi1 ;i2Pn1
j1¼1

Pn2
j2¼1Nj1 ;p1

ðn1ÞNj2 ;p2
ðn2Þwj1 ;j2

; ð7Þ
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