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a b s t r a c t

A paper presents the sampling surfaces (SaS) method and its implementation for the three-dimensional
(3D) exact analysis of functionally graded (FG) piezoelectric laminated plates. According to this method,
we introduce inside the nth layer In not equally spaced SaS parallel to the middle surface of the plate and
choose displacement vectors and electric potentials of these surfaces as basic plate variables. Such choice
of unknowns with the consequent use of Lagrange polynomials of degree In � 1 in the thickness direction
for each layer leads to a very compact form of governing equations of the FG piezoelectric plate formu-
lation. This fact gives an opportunity to derive the 3D exact solutions of electroelasticity for thick and thin
FG piezoelectric laminated plates with a specified accuracy utilizing a sufficient number of SaS, which are
located at interfaces and Chebyshev polynomial nodes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a considerable work has been carried out on the
three-dimensional (3D) exact analysis of piezoelectric laminated
plates. In the literature, there are at least four approaches to 3D ex-
act solutions of electroelasticity for piezoelectric laminated plates,
namely, the Pagano approach, the state space approach, the
asymptotic approach and the sampling surfaces (SaS) approach.
The first approach [1,2] was applied to piezoelectric plates by
Ray et al. [3], Heyliger [4,5], Heyliger and Brooks [6]. The 3D exact
analysis of piezoelectric orthotropic and anisotropic plates based
on the state space approach was carried out in contributions [7–
11]. The asymptotic approach was utilized for derivation of 3D ex-
act solutions for piezoelectric plates [12–15]. The SaS approach
was recently implemented for the 3D exact analysis of piezoelec-
tric laminated orthotropic and anisotropic plates [16].

Nowadays, the functionally graded (FG) piezoelectric materials
are widely used in mechanical engineering due to their advantages
compared to traditional piezoelectric laminated materials. How-
ever, the study of FG piezoelectric structures is not a simple task
[17] because the material properties depend on the thickness coor-
dinate and some specific assumptions concerning their variations
in the thickness direction are required [18,19]. In practice, this im-
plies that we deal here with a system of differential equations with
variable coefficients. Therefore, the first two approaches, i.e., the
Pagano approach and the state space approach cannot be applied
directly to 3D exact solutions for FG piezoelectric plates without

using above specific assumptions [20]. On the contrary, the asymp-
totic approach [21] and the SaS approach can be applied directly to
3D solutions for FG piezoelectric plates because governing differ-
ential equations are obtained through definite integration in the
thickness direction.

The present paper is intended to show that the SaS method can
be also applied efficiently to 3D exact solutions of electroelasticity
for FG piezoelectric laminated plates. According to this method,
we choose inside the nth layer In not equally spaced SaS
XðnÞ1;XðnÞ2; . . . ; XðnÞIn parallel to the middle surface of the plate and
introduce the displacement vectors uðnÞ1;uðnÞ2; . . . ; uðnÞIn and the
electric potentials uðnÞ1;uðnÞ2; . . . ; uðnÞIn of these surfaces as basic
plate variables, where In P 3. Such choice of unknowns in conjunc-
tion with the use of Lagrange polynomials of degree In � 1 in the
thickness direction permits the presentation of governing equations
of the proposed FG plate formulation in a very compact form. Note
that the SaS method has been already applied to the 3D analysis of
elastic and piezoelectric laminated plates and shells [16,22–25].

It should be mentioned that the developed approach with
equally spaced SaS [22] does not work properly with Lagrange
polynomials of high degree because the Runge’s phenomenon
can occur, which yields the wild oscillation at the edges of the
interval when the user deals with any specific functions. If the
number of equally spaced nodes is increased then the oscillations
become even larger. Fortunately, the use of Chebyshev polynomial
nodes [26] inside each layer can help to improve significantly the
behavior of Lagrange polynomials of high degree for which the
error will go to zero as In ?1 .

An idea of using the SaS can be traced back to [27,28] in which
three, four and five equally spaced SaS are employed. These
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contributions describe the SaS concept applied to the approximate
solution of 3D plate/shell problems. For further information the
reader refers to fundamental works [29,30] where the Legendre
polynomials in the thickness direction are utilized. However, the
use of Legendre polynomials cannot provide a uniform convergence
of computational procedures to be developed. On the contrary, the
SaS method leads to a uniform convergence, as shown in Section 5,
that in turn gives an opportunity to derive the 3D exact solutions
for FG piezoelectric laminated plates with a prescribed accuracy
employing the sufficient number of SaS.

The authors restrict themselves to finding five right digits in all
examples presented. The better accuracy is possible of course but
requires more SaS inside the plate body to be taken.

2. Description of electric field

Consider a FG piezoelectric laminated plate of the thickness h.
Let the middle surface X be described by Cartesian coordinates
x1 and x2. The coordinate x3 is oriented in the thickness direction.
The transverse coordinates of SaS inside the nth layer are defined
as

xðnÞ13 ¼ x½n�1�
3 ; xðnÞIn

3 ¼ x½n�3 ;

xðnÞmn
3 ¼ 1

2
x½n�1�

3 þ x½n�3

� �
� 1

2
hn cos p

2mn � 3
2ðIn � 2Þ

� �
; ð1Þ

where x½n�1�
3 and x½n�3 are the transverse coordinates of layer inter-

faces X[n�1] and X[n] (Fig. 1); hn ¼ x½n�3 � x½n�1�
3 is the thickness of

the nth layer; the index n identifies the belonging of any quantity
to the nth layer and runs from 1 to N, where N is the number of lay-
ers; the index mn identifies the belonging of any quantity to inner
SaS of the nth layer and runs from 2 to In � 1, whereas the indices
in, jn, kn to be introduced later for describing all SaS of the nth layer
run from 1 to In.

Remark 1. It is worth noting that transverse coordinates of inner
SaS (1) coincide with coordinates of Chebyshev polynomial nodes
[26]. This fact has a great meaning for a convergence of the SaS
method [23–25].

The relation between the electric field vector and the electric
potential u is given by

Ei ¼ �u;i: ð2Þ

Here, and in the following developments, indices i, j, k, ‘ range from
1 to 3, whereas Greek indices a, b range from 1 to 2.

The electric field vector at SaS of the nth layer is written as

EðnÞina ¼ Ea xðnÞin3

� �
¼ �uðnÞin;a ; ð3Þ

EðnÞin3 ¼ E3 xðnÞin3

� �
¼ �wðnÞin ; ð4Þ

where uðnÞin ðx1; x2Þ are the electric potentials of SaS of the nth layer;
wðnÞin ðx1; x2Þ are the values of the derivative of the electric potential
with respect to thickness coordinate at SaS, that is,

uðnÞin ¼ u xðnÞin3

� �
; wðnÞin ¼ u;3ðx

ðnÞin
3 Þ: ð5Þ

Next, we assume that the electric potential and the electric field
vector are distributed through the thickness of the nth layer as
follows:

uðnÞ ¼
X

in

LðnÞinuðnÞin ; x½n�1�
3 6 x3 6 x½n�3 ; ð6Þ

EðnÞi ¼
X

in

LðnÞin EðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð7Þ

where LðnÞin ðx3Þ are the Lagrange polynomials of degree In � 1 ex-
pressed as

LðnÞin ¼
Y

jn–in

x3 � xðnÞjn3

xðnÞin3 � xðnÞjn3

: ð8Þ

The use of (5) and (6) leads to a simple formula

wðnÞin ¼
X

jn

MðnÞjnðxðnÞin3 ÞuðnÞjn ; ð9Þ

where MðnÞjn ¼ LðnÞjn;3 are the derivatives of Lagrange polynomials,
which are calculated at SaS of the nth layer as

MðnÞjn xðnÞin3

� �
¼ 1

xðnÞjn3 � xðnÞin3

Y
kn–in ;jn

xðnÞin3 � xðnÞkn
3

xðnÞjn3 � xðnÞkn
3

for jn–in;

MðnÞin xðnÞin3

� �
¼ �

X
jn–in

MðnÞjn xðnÞin3

� �
:

ð10Þ

This implies that the key functions wðnÞin of the electric field for-
mulation are represented as a linear combination of electric poten-
tials of SaS of the nth layer uðnÞjn .

3. Kinematic description of FG laminated plate

The strain tensor is given by

2eij ¼ ui;j þ uj;i; ð11Þ

where ui are the displacements of the plate. In particular, the strain
components at SaS are

2eðnÞinab ¼ 2eab xðnÞin3

� �
¼ uðnÞina;b þ uðnÞinb;a ;

2eðnÞina3 ¼ 2ea3 xðnÞin3

� �
¼ bðnÞina þ uðnÞin3;a ;

eðnÞin33 ¼ e33 xðnÞin3

� �
¼ bðnÞin3 ;

ð12Þ

where uðnÞini ðx1; x2Þ are the displacements of SaS of the nth layer;
bðnÞini ðx1; x2Þ are the values of derivatives of displacements with re-
spect to coordinate x3 at SaS, that is,

uðnÞini ¼ ui xðnÞin3

� �
; bðnÞini ¼ ui;3 xðnÞin3

� �
: ð13Þ

The following step consists in a choice of consistent approxima-
tion of displacements and strains through the thickness of the nth
layer. It is apparent that displacement and strain distributions
should be chosen similar to electric field distributions (6) and (7):

uðnÞi ¼
X

in

LðnÞin uðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð14Þ

Fig. 1. Geometry of the laminated plate.
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