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a b s t r a c t

Viscoelastic fluids are of great importance in many industrial sectors, such as in food and synthetic poly-
mers industries. The rheological response of viscoelastic fluids is quite complex, including combination
of viscous and elastic effects and non-linear phenomena. This work presents a numerical methodol-
ogy based on the split-stress tensor approach and the concept of equilibrium stress tensor to treat high
Weissenberg number problems using any differential constitutive equations. The proposed methodology
was implemented in a new computational fluid dynamics (CFD) tool and consists of a viscoelastic fluid
module included in the OpenFOAM, a flexible open source CFD package. Oldroyd-B/UCM, Giesekus, Phan-
Thien–Tanner (PTT), Finitely Extensible Nonlinear Elastic (FENE-P and FENE-CR), and Pom–Pom based
constitutive equations were implemented, in single and multimode forms. The proposed methodology
was evaluated by comparing its predictions with experimental and numerical data from the literature
for the analysis of a planar 4:1 contraction flow, showing to be stable and efficient.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Processing operations involving viscoelastic melts, solutions, or
suspensions are usually the key step in the definition of the char-
acteristics and quality of the finished products in polymer and
food industries. Therefore, understanding and modeling viscoelas-
tic flows is of fundamental importance in these industrial sectors.
The rheological response of viscoelastic fluids is quite complex,
including combination of non-linear viscous and elastic effects,
such as strain rate dependent viscosity, presence of normal stress
differences in shear flows, relaxation phenomena, and memory
effects, including die swell [1,2].

Numerous studies on the numerical analysis of viscoelastic
flows using one or more non-linear differential models can be
found in literature. A common difficulty in all these works, regard-
less of the discretization method (finite element, finite differences,
or finite volume), iterative solution method, or constitutive equa-
tions used, is the so-called ‘High Weissenberg Number Problem’
(HWNP). The HWNP consists in the difficulty of achieving conver-
gence at high Weissenberg (We) or Deborah (De) numbers, where
the dimensionless numbers We and De are ratios between a char-
acteristic relaxation time of the polymer and a characteristic flow
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time. The higher the Weissenberg (or Deborah) number, the more
pronounced the elastic effect. In the attempt of solving the HWNP or
minimizing its effects, many strategies have been proposed, includ-
ing special interpolations schemes [3,4] and specific numerical
methodologies coupling momentum and constitutive viscoelastic
equations [5–8].

Another relevant aspect regarding the analysis of viscoelastic
flows is the development of software specifically designed for this
purpose. Despite the extensive literature on viscoelastic behav-
ior modeling and viscoelastic flow simulation, most of commercial
packages intended to be applied to the analysis of polymeric flows
and polymer processing operations, such as extrusion and injection
molding, are actually limited to the description of purely viscous
non-Newtonian phenomena. Development and use of software
with viscoelastic flow analysis capability is still carried out almost
exclusively in academic environments, for specific applications.

According to this scenario the insertion of a viscoelastic fluid
flow solver in a widely recognized CFD (computational fluid dynam-
ics) package is a relevant matter, since it would bring to viscoelastic
fluid flow analysis field the main features of CFD packages, which
include the possibility of analyzing complex geometries using
unstructured and non-orthogonal meshes, moving meshes, large
variety of interpolation schemes and solvers for the linear dis-
cretized system, data processing parallelization among others
benefits.

Being a well-tested and widely used free open source CFD
package, with the intrinsic advantages of being writen in the C++
object-oriented language, in this context the OpenFOAM (Open
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Source Field Operation and Manipulation) package [9,10] appears as
a promising tool for this kind of development. The flexibility to deal
with unstructured and moving meshes and to implement complex
mathematical models are some of its attractive features.

Therefore, the goal of this work was to create a general purpose
viscoelastic fluid flow solver to be used in OpenFOAM CFD package.
For this, a numerical methodology based on the split-stress tensor
approach [6–8,11] and on the concept of equilibrium stress tensor
was developed to treat the HWNP and deal with any differential
constitutive equations. The so-called viscoelasticFluidFoam solver
was evaluated by comparing its predictions with experimental and
numerical data from the literature for the analysis of a planar 4:1
contraction flow.

2. Methodology

In this section the mathematical formulation and the main
aspects related to the viscoelasticFluidFoam solver are presented.
The case study used to evaluate the solver is also presented.

2.1. Mathematical model

The governing equations for isothermal incompressible flows of
viscoelastic fluids are the mass conservation (continuity):

∇ · (u) = 0 (1)

and momentum conservation:

∂(� u)
∂t

+ ∇ · (�u u) = −∇p + ∇ · � (2)

together with a constitutive equation to describe the relation
between the stress and deformation rate for the fluid of interest.
In the above equations � is the density of the fluid, u the velocity
vector, p the pressure, and � the stress tensor.

The stress tensor can be divided into a Newtonian solvent con-
tribution �S and an elastic polymeric contribution (or extra elastic
stress tensor) �P:

� = �S + �P (3)

with �S defined by:

�S = 2�S D (4)

where �S is the solvent viscosity and D is the deformation rate
tensor given by:

D = 1
2

(∇u + [∇u]T ) (5)

The �P is a symmetric tensor obtained as the sum of the contri-
butions of the individual relaxation modes:

�P =
n∑

K=1

�PK
(6)

with the expression for �PK
depending on the viscoelastic consti-

tutive equation.
The differential constitutive equations used in this work are pre-

sented in Table 1. Since all these equations are well known and
extensively used in the literature, the expressions for the upper

convected (
∇
�PK

), lower convected (
�
SPK

) and Gordon–Schowalter

(
�
�PK

) derivatives, and the meaning of the parameters which appear
in the models of Table 1 are not shown here. The expressions for
the mentioned derivatives can be found in classic rheology books
[1,2], while for detailed information about these models and their
parameters the reader is suggested to refer to [12–22].

2.2. Pressure–velocity and momentum–stress coupling and
tensorial viscosity

Velocity–pressure coupling was accomplished by segregated
methods, in which the continuity equation is used to formulate
an equation for the pressure, using a semi-discretized form of
Eq. (2)[23]. The resulting equation set is solved by a decoupled
approach, using iterative algorithms with under-relaxation, such
as SIMPLE [24].

Regarding momentum–stress coupling and numerical stabi-
lization in the solution of the momentum equation, the strategy
employed consists of decomposing the viscoelastic stress into an
implicit component aligned with D, defined on the basis of a ten-
sorial viscosity �T, and an explicit correction:

∇ · � ≈ ∇ · (�T · ∇u) + ∇ · �corr (7)

Addtionally, the stress transport models were written in the
following generic form:

∂

∂t
� + ∇ · (u�) = �∗ − �

�
(8)

This equation describes transport of � in space by the velocity field,
with simultaneous relaxation towards the equilibrium value �∗,
where �∗ is the stress state achieved in the absence of transport
effects and � is the relaxation time scale. It is possible to achieve
this form irrespective of the specific model used. For multi-mode
versions of the stress models, each mode will present its own equi-
librium stress, which can be combined in the usual manner.

From Eq. (8), one can clearly see that �∗ must be related to
the local value of D, specifically because it excludes the effects of
relaxation and transport. Furthermore, the magnitude of �T, that is
related with D and �∗, will be considerably higher than the New-
tonian viscosity (Eq. (4)), whose effective contribution is generally
not significant for realistic non-linear flows of polymeric melts. This
higher magnitude of �T represents a key aspect in the methodology
used in this work, since the stability in the numerical solution of
the momentum equation is strongly dependent on the magnitude
of the implicit Laplacian-like term.

A consistent and model-independent expression for �T may be
obtained based on the definition:

�∗ = �T · D (9)

from which:

�T = �∗ · D−1 (10)

For cases where det(D) = 0 (implying that a velocity gradient is a
singular tensor), �T = 0 or �T = �P I are adequate choices. For multi-
mode versions of the stress models, components of �T can be
summed up in the same manner as constituent stress tensors.

In this formulation, the momentum equation was implemented
in the following form:

∂(� u)
∂t

+ ∇ · (�u u) − ∇ · (�T · ∇u) = −∇p + ∇ · �corr (11)

where the dominant Laplacian-like term, ∇ · (�T · ∇u) guarantees
stability through implicit treatment, while the correction term
∇ · �corr is simply calculated as the difference between the diver-
gence of the instantaneous stress � and the implicit counterpart,
i.e, the term ∇ · (�T · ∇u). Note that ∇ · �corr also carries the relax-
ation component (� − �∗), which tends to zero over the relaxation
time-scale �.

For segregated approaches, one can further simplify the ten-
sorial Laplacian-like ∇ · (�T · ∇u), using a decomposition into a
spherical component of �T, with the deviatoric part being absorbed
into �corr.
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