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a b s t r a c t

Variable angle tow (VAT) placement has been shown to improve the buckling resistance of composite
plates under compression loading. The problem of tailoring the in-plane tow path of VAT composite
plates for enhanced postbuckling resistance is studied in this work. A pair of coupled geometrically
nonlinear governing differential equations in terms of stress function and transverse displacement, based
on classical laminated plate theory, is derived for postbuckling analysis of VAT plates. The differential
quadrature method (DQM) is applied to solve the differential equations and the resulting nonlinear alge-
braic equations solved using a Newton–Raphson algorithm. The DQM was applied to study the postbuck-
ling problem of VAT composite plates subjected to axial compression under different plate boundary
conditions. The numerical results of DQM are compared with detailed finite element analysis and the
relative accuracy and efficiency of the proposed DQM approach is studied.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The buckling performance of variable angle tow composites has
been studied extensively and has been shown to exhibit potentially
superior structural performance over conventional straight fibre
composites [1–3]. The tow steering concept is now considered
for improving the postbuckling strength and stiffness of VAT
plates. The VAT concept for the design of composite structures in
the postbuckling range provides increased tailorability options to
reduce weight and improve structural performance. Very few
works have been reported on the postbuckling analysis of VAT
plates. Rahman et al. [4] studied the postbuckling response of
VAT plates using a perturbation approach coupled with finite ele-
ment modelling. The perturbation approach was used to generate
a reduced-order model for computation of postbuckling coeffi-
cients to predict the postbuckling stiffness of VAT plates. Biggers
et al. [5] used finite elements to study the postbuckling response
of piecewise uniform tailored composite plates and demonstrated
an improvement in postbuckling stiffness of these plates over uni-
form composite plates. Lopes et al. [6] studied the buckling and
postbuckling failure response characteristics of variable stiffness
composites. They used finite element analysis to model to study
the failure of VAT plates which requires significant computational
effort. In parallel work, we [7,8] proposed a mixed variational ap-
proach using stress function and transverse displacement to solve

the postbuckling problem of VAT plates. We applied Rayleigh–Ritz
method to the variational form and then studied the postbuckling
response of square VAT plates under different inplane boundary
conditions. Alhajahmad et al. [9] studied the nonlinear pressure
pillowing problem using the Rayleigh–Ritz method and showed
an improvement in load carrying capacity using VAT panels com-
pared to straight fibre designs. Weaver et al. [10] employed an
embroidery machine for manufacture of tow steered plates and
showed designs of VAT plates with nonlinear angle distributions.
Their experimental and finite element results demonstrated simi-
lar buckling performance to a quasi-isotropic composite, but im-
proved postbuckling response. New methods which are fast,
accurate and computationally less expensive are required for non-
linear analysis of VAT plates. In this work, a numerical methodol-
ogy based on the differential quadrature method (DQM) is
developed for postbuckling analysis of VAT panels.

The nonlinear behaviour of a plate undergoing large deforma-
tion is described using the von Karman strain–displacement rela-
tions which are then applied and used with equilibria and
constitutive relations to derive the governing partial differential
equations. In the literature, various numerical methods like finite
element (FE) method, finite strip method, boundary element meth-
od and finite difference method have been applied to solve the
postbuckling problem of composite plates [11–14]. Further,
numerous semi-analytical approaches based on Rayleigh–Ritz,
Galerkin and perturbation methods have been proposed to solve
the postbuckling problem of composite plates [15–18]. As an
alternative to these methods, the DQ approach which is a
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comparatively new method is being investigated for performing
nonlinear structural analysis of VAT composite plates. The DQM
was previously applied by the authors for prebuckling and buckling
analysis of VAT plates [19] and found the approach to be accurate,
robust and computationally efficient. Bert et al. [20] studied the non-
linear bending of orthotropic plates using DQM and showed that the
method computes solutions of reasonable accuracy with relatively
little computational effort. However, the results for simply sup-
ported plates were not accurate and this problem was attributed
to the numerical procedure used for enforcement of the boundary
conditions on the plate edges. To overcome this problem, Chen
et al. [21] presented a new DQM approach for applying the boundary
conditions and applied special matrix products to formulate nonlin-
ear differential equations into simplified matrix form. Later, Chen
successfully applied the new DQ approach to solve the geometrically
nonlinear bending problem of isotropic and orthotropic rectangular
plates. Li et al. [22] further extended DQM to study the nonlinear
bending of orthotropic plates by including the effect of transverse
shear on bending deformation. Taheri et al. [23] applied DQM to per-
form postbuckling analysis of straight fibre composites and used an
arclength method to solve the nonlinear algebraic equations. In
these works, the nonlinear field equations were written in terms
of displacements (u,v,w) and DQM was then applied to solve them.
Liew et al. [24] modelled the postbuckling behaviour of functionally
graded material plates using the stress function approach and pro-
posed a combined Galerkin-differential quadrature iteration algo-
rithm for solution of the nonlinear field equations. To the authors’
knowledge, no other works have been reported in the literature of
using DQM alone to solve the postbuckling problem modelled using
a stress function approach. In this work, this problem is addressed,
i.e. DQM is used to solve the postbuckling problem of straight fi-
bre/VAT rectangular composite plates modelled using Airy’s stress
function and transverse displacement under axial compression.
The advantage of this approach is the use of Airy’s stress function
to perform the postbuckling analysis of anisotropic composite plates
considerably reduces the problem size and when coupled with DQM
requires less computational effort than finite element method. The
generality of the formulation helps in efficient modelling of pure
stress and mixed in-plane boundary conditions applied to the com-
posite plate and also include the effect of flexural-twist coupling
coefficients in the postbuckling response of composite plates. The
postbuckling performance of VAT panels with linearly varying fibre
orientations, in the planform, under different plate boundary condi-
tions is shown using DQM and the results compared with the FE
method. The stability and robustness of DQM in computing the post-
buckling performance of VAT panels is also analysed.

The remainder of this work is organized as follows. In Section 2,
the field equations for postbuckling analysis of VAT composite
plates are presented. In Section 3, the numerical aspects of DQM
such as grid point distributions, weighting matrices and ap-
proaches to apply boundary conditions are discussed. In Section 4,
several numerical examples of VAT panels are presented to demon-
strate the accuracy of the method and close with a few concluding
remarks in Section 5.

2. Postbuckling analysis

Variable angle tow placement allows the fibre to be steered
along the plane of the plate resulting in stiffness properties varying
with inplane coordinates x–y of the plate. In the case of symmetric
VAT panels, stiffness matrices A,D are a function of x–y coordinates
and the constitutive equation in partially inverse form is given by,
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where �0, j are the midplane strain and curvature, N;M are the
stress and moment resultants, and A⁄ = A�1 is the compliance ma-
trix. The nonlinear midplane strains �0 and curvatures j are defined
as
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where u, v, w are the displacements and w0 is the initial imperfec-
tion function [25]. A stress function X is introduced such that the
stress resultants are defined by,

Nx ¼ X;yy; Ny ¼ X;xx; Nxy ¼ �X;xy ð3Þ

The compatibility condition in terms of mid-plane strains in a plane
stress condition is given by
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After substitution of Eqs. (1)–(3) into Eq. (4), the final form is given
by
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where the terms A�ik ¼ A�ikðx; yÞ; i; k ¼ ½1;2;6� are a function of the
x–y coordinates and the Eq. (5) represents a fourth order elliptic
partial differential equation in terms of stress function with variable
coefficients. The differential equation of transverse motion that gov-
erns the postbuckling analysis of symmetrical VAT plate is given by,

@2Mx

@x2 þ2
@2Mxy

@x@y
þ@

2My

@y2 þNx
@2w
@x2 þ2Nxy

@2w
@x@y

þNy
@2w
@y2 þq¼0 ð6Þ

where Mx, My, Mxy are the moment distributions and q is the load
applied in z direction. Eqs. (1)–(3) are then substituted in Eq. (6)
and the resulting differential equation is given by

D11w;xxxx þ 4D16ðx; yÞw;xxxy þ 2ðD12 þ 2D66Þw;xxyy þ 4D26w;yyyx
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þ 2Xxyðw;xy þw0;xyÞ �Xxxðw;yy þw0;yyÞ þ q ¼ 0 ð7Þ

where the terms Dik = Dik(x,y); i, k = [1,2,6] are a function of the x–y
coordinates. Thus, Eqs. (5) and (7) represent coupled fourth order
nonlinear elliptic partial differential equations in terms of stress
function X and transverse deflection w with variable coefficients
for postbuckling analysis of VAT composite plates. The stress
boundary conditions expressed in terms of X and its derivatives
were applied along the boundary. For axial compression loading,
the boundary conditions are given by,
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