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a b s t r a c t

This paper mainly studies the thermo-electro-mechanical free vibration of piezoelectric nanoplates based
the nonlocal theory and Kirchhoff theory. It is assumed that the piezoelectric nanoplate is a simply sup-
ported rectangular plate, and subjected to a biaxial force, an external electric voltage and a uniform tem-
perature change. The governing equations and boundary conditions are derived by using the Hamilton’s
principle, which are then solved analytically to obtain the natural frequencies of the piezoelectric nano-
plate. A detailed parametric study is conducted to discuss the influences of the nonlocal parameter, axial
force, external electric voltage and temperature change on the thermo-electro-mechanical vibration
characteristics of piezoelectric nanoplates.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials can be found of various practical appli-
cations in smart structures and systems owning to their intrinsic
electromechanical coupling effect [1,2]. Extensive technical litera-
tures regarding the macroscopic piezoelectric materials can be
found in the monographs [3,4]. As for the piezoelectric nanomate-
rials, Pan et al. [5] first reported the ZnO piezoelectric nanowires in
Science magazine. Since then, a variety of piezoelectric nanomate-
rials (e.g. ZnO, ZnS, PZT, GaN, BaTiO3, etc.) and their nanostructures
(e.g. nanowires, nanobelts, nanorings, nanohelices, etc.) received
considerable attentions from research communities and institutes
[6–9]. The piezoelectric nanostructures are of significant thermal,
electrical, mechanical and other physical/chemical properties com-
pared with their macro-scale counterparts [6,9], and of potential
applications in many nanodevices [10–13], including nanoreson-
ators, nanogenerators, light-emitting diodes, chemical sensors, etc.

It should be pointed out that the dimension of piezoelectric
nanostructures may vary from several hundred nanometers to just
a few nanometers. On this scale, the size effect becomes very obvi-
ous and essential, which has already been proved by many exper-
iments and atomistic simulations [14,15]. However, the classical
continuum theory, which is a scale-independent theory, fails to
meet the computing demands of nanostructures. So, extensive
high-order theories such as the strain gradient theory, couple
stress theory, micro-polar theory, and nonlocal elasticity theory,

are developed to modify the classical continuum theory and to
characterize the size effect of nanostructures by introducing an
intrinsic length scale. Among all these high-order theories, the
nonlocal elasticity theory raised by Eringen [16–18] is generally
accepted and applied to analyze the scale effect of nanostructures.
By considering the interactions and forces between atoms, the
nonlocal theory introduces the internal length scale into the con-
stitutive equations as a material parameter. Based on the nonlocal
theory, the analysis of the size-dependent properties of nanostruc-
tures becomes an active research recently. Meanwhile, the non-
local nanobeam, nanoplate and nanoshell models were developed
to solve the bending [19–21], buckling [22,23], linear and nonlin-
ear vibrations [24–27], postbuckling [28] and wave propagation
[29,30] of nanostructures.

The above studies mainly concerned the size effect on the elas-
tic nanostructures like carbon nanotubes, graphene sheets, etc.
Recently, the nonlocal theory was extended to the piezoelectric
nanostructures by Ke and his co-authors and Arani and his
co-authors. Ke and Wang [31] and Ke et al. [32] analyzed the linear
and nonlinear vibrations of piezoelectric nanobeams based on the
nonlocal theory and Timoshenko beam theory. On the foundation
of nonlocal piezoelectric shell theory, Arani et al. [33,34] analyzed
the axial buckling and free vibration of double-walled Boron Ni-
tride nanotubes (BNNTs) embedded in an elastic medium under
combined electro-thermo-mechanical loads. And also, except for
the nonlocal effect, the surface effect on the piezoelectric nano-
structures has also concerned by many investigators. Huang and
Yu [35] examined the effect of the surface piezoelectricity on the
electromechanical behavior of the piezoelectric ring. According to
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Huang and Yu’s surface piezoelectricity model, Yan and Jiang [36–
39] considered the bending, buckling and vibration behaviors of
piezoelectric nanobeams and nanoplates.

In this paper, we investigate the thermo-electro-mechanical
free vibration of piezoelectric nanoplates based on nonlocal theory
and Kirchhoff plate theory. It is assumed that the piezoelectric
rectangular nanoplate is of all edges simply supported, and
subjected to a biaxial force, an external electric voltage and a uni-
form temperature change. The governing equations and boundary
conditions are derived by using the Hamilton’s principle, which are
then solved analytically to obtain the natural frequency of the
piezoelectric nanoplate. The influences of the nonlocal parameter,
biaxial forces, external electric voltage and temperature change
on the thermo-electro-mechanical vibration characteristics of
piezoelectric nanoplates are examined.

2. Nonlocal theory for the piezoelectric materials

According to the nonlocal elasticity theory developed by Erin-
gen [16–18], the stress at a point x in a body depends not only
on the strain at that point but also on those at all other points x0

of the body, which is in accordance with the atomic theory of the
lattice dynamics and the experiment of phonon dispersion [17].
By introducing a nonlocal attenuation function to account for the
effect of long-range interatomic forces, the nonlocal elasticity the-
ory explains satisfactorily some phenomena such as the high fre-
quency vibration and wave dispersion. Mathematically, ignoring
the effect of body force, the basic equations for a homogeneous
and nonlocal piezoelectric solid can be expressed as

rij ¼
Z

V
aðjx0 � xj; sÞ½cijkleklðx0Þ � ekijEkðx0Þ � kijDT�dx0; ð1Þ

Di ¼
Z

V
aðjx0 � xj; sÞ½eikleklðx0Þ � jkijEkðx0Þ þ piDT�dx0; ð2Þ

rij;j ¼ q€ui; Di;j ¼ 0; ð3Þ

eij ¼
1
2
ðui;j þ uj;iÞ; Ei ¼ �Ui; ð4Þ

where V is the volume of the piezoelectric solid; rij, eij, Di, Ei and ui

are respectively the components of the stress, strain, electric dis-
placement, electric field and displacement; cijkl, ekij, jkij, kij, pi and
q are respectively the elastic constants, piezoelectric constants,
dielectric constants, thermal moduli, pyroelectric constants and
mass density; DT and U are the temperature change and electric
potential, respectively. a(jx0 � xj,s) represents the nonlocal attenu-
ation function, incorporating into the constitutive equations the
influences at the reference point produced by the local strain at
the source x0, where jx0 � xj is the Euclidean distance. s = e0a/l is
the scale coefficient that incorporates the small scale factor, where
e0 is a material constant determined experimentally or approxi-
mated by matching the dispersion curves of the plane waves with
those of the atomic lattice dynamics; and a and l are the internal
(e.g. lattice parameter, granular size) and external characteristic
lengths (e.g. crack length, wavelength) of the nanostructures,
respectively.

However, the above expressions are difficult in solving results
mathematically due to the spatial integrals in the constitutive
equations. According to Eringen [17], the integral constitutive rela-
tions is converted to an equivalent differential form as

rij � ðe0aÞ2r2rij ¼ cijklekl � ekijEk � kijDT; ð5Þ
Di � ðe0aÞ2r2Di ¼ eiklekl � jkijEk þ piDT; ð6Þ

wherer2 is the Laplace operator; e0a is the scale coefficient reveal-
ing the size effect on the response of structures in nanosize.

3. Free vibration analysis of the piezoelectric nanoplate

In this section, the free vibration of the piezoelectric nanoplate
under thermo-electro-mechanical loadings is analyzed on the basis
of the nonlocal theory for the piezoelectric materials mentioned
above. As is shown in Fig. 1, consider a rectangular piezoelectric
nanoplate with length la, width lb and thickness hunder the plane
stress state, defined in the rectangular coordinate system
(0 6 x 6 la, 0 6 y 6 lb, �h/2 6 z 6 h/2). The nanoplate is subjected
to a biaxial force P0 (compressive force or tensile force), an applied
voltage U(x, y, z, t) and a uniform temperature change DT. The
poling direction of the piezoelectric medium is parallel to the
positive z-axis. According to the Kirchhoff plate theory, the dis-
placement of an arbitrary point along the x-, y- and z-axis, denoted
as u1(x, y, z, t), u2(x, y, z, t) and u3(x, y, z, t) can be expressed as

u1ðx; y; z; tÞ ¼ uðx; y; tÞ � z
@wðx; y; tÞ

@x
;

u2ðx; y; z; tÞ ¼ vðx; y; tÞ � z
@wðx; y; tÞ

@y
;

u3ðx; y; z; tÞ ¼ wðx; y; tÞ;

ð7Þ

where u(x, y, t) and v(x, y, t) are the in-plane displacements of the
mid-plane in the nanoplate (on the x- and y-direction, respectively);
w(x, y, t) is the out-plane displacement of the mid-plane in the
nanoplate (on the z-direction) and t is the time.

In addition to the displacement field, the distribution of the
electric potential should conform to the Maxwell equation. In
Fig. 1, the top and bottom surfaces of the piezoelectric plate have
electrodes to facilitate the application of voltage to actuate the
structure. When an external voltage is applied, the electric poten-
tial distribution on the surface of the electrode remains constant.
When electrodes at the two surfaces of the piezoelectric plate are
shortly connected, the electric potential is zero throughout the sur-
faces [40–42]. Quek and Wang [40] and Wang [43] performed the
dispersion and buckling characteristics of the piezoelectric plate
and beam by assuming the electric potential as a combination of
a cosine and linear variation in order to satisfy the Maxwell equa-
tion. This assumption is verified numerically by finite element
method for the case of a uniform moment applied to the piezoelec-
tric plate [42]. Therefore, following Quek and Wang [40] and Wang
[43], the electric potential is approximately assumed as a combina-
tion of cosine and linear variation,

Uðx; y; z; tÞ ¼ � cosðbzÞ/ðx; y; tÞ þ 2zV0

h
eiXt; ð8Þ

where b = p/h; /(x, y, t) is the spatial and time variation of the elec-
tric potential in the mid-plane; V0 is the external electric voltage; X
is the natural frequency of the piezoelectric nanoplate.

T
P0

P0

P0

P0

o

la
h

lb

z

y

x

Fig. 1. A piezoelectric nanoplate under thermo-electro-mechanical loadings.
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