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a b s t r a c t

A new micromechanics model is developed to predict the effective properties as well as the local fields of
heterogeneous magnetostrictive composite materials using the variational asymptotic method for unit
cell homogenization (VAMUCH), a recently developed micromechanics modeling technique. Starting
from the total magnetic enthalpy of the heterogenous continuum, we formulate the micromechanics
model as a constrained minimization problem taking advantage of the fact that the size of the micro-
structure is small compared to the macroscopic size of the material. To handle realistic microstructures
in engineering applications, we implement this new model using the finite element method. A few exam-
ples are used to demonstrate the application and accuracy of the proposed theory and the companion
computer program-VAMUCH.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetostrictive materials such as CoFe2O4 are widely used in
sensors and actuchanical energy, and vice versa. Howevercks for
instance their weight, disadvantage of shape control, and acoustic
impedance, therefore magnetostrictive composite materials are
usually a better technical solution in the case of many applications
such as ultrasonic generators, ultrasonic receivers, and echo detec-
tors. Recently, magnetostrictive composites are developed by com-
bining magnetostrictive materials with passive materials to form a
variety of types of magnetostrictive composite systems. To facili-
tate the design and analysis of such materials, convenient and
accurate analysis tools are apparently indispensable.

Although it is logically sound to use the well-established finite
element method (FEM) to analyze such structures by meshing all
the details of constituent materials, the size of the finite element
model will easily overpower most of the computers we can access
in the foreseeable future because the macroscopic structural
dimensions are usually several orders of magnitude larger than
the characteristic size of constituent materials.

In the past several decades, numerous approaches have been
proposed to predict the effective properties of magnetostrictive
composites from known constituent information. Simple analytical
approaches based on Voigt or Reuss hypothesis have been applied

to predict the behavior of a limited class of composite geometries
[1]. Variational bounds have been obtained for describing the com-
plete overall behavior which are useful tools for theoretical consid-
eration [2]. However, the range between bounds could be too large
to be of practical use. Researchers have proposed various tech-
niques to either reduce the difference between the upper and
lower bounds, or find an approximate value between the upper
and lower bounds. Typical approaches are the self-consistent
approach [3], mathematical homogenization theories (MHTs) [4],
finite element approaches using conventional stress analysis of a
representative volume element (RVE) [5]. Li and Dunn [6] em-
ployed the Mori–Tanaka method [7] for predicting the average
fields and effective moduli of fully coupled magneto-electric–elas-
tic properties of circular cylinder fibrous and laminated two-phase
composites. Other studies have focused on the classical extensions
of Eshelbys solutions [8] (mean field-type methods) for finite
inclusion volume fraction, i.e., the differential approaches [9] and
models based on the generalized Mori–Tanaka and self-consistent
approaches [10].

The objective of this paper is to develop a micromechanics
model based on the framework of variational asymptotic method
for unit cell homogenization (VAMUCH) for predicting the effective
properties and local fields of magnetostrictive composites. This
framework is build upon the variational asymptotic method
(VAM) [11] along with two essential assumptions within the con-
cept of micromechanics for composite with an identifiable Unit
Cell (UC). VAM simplifies the procedure of solving physical prob-
lems that can be formulated in terms of a variational statement
involving one or more small parameters, which has been used
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extensively to construct efficient high-fidelity structure models for
composite beams [12], composite and smart plates [13,14], and
composite and smart shells [15,16], achieving an excellent
compromise between accuracy and efficiency. The two essential
assumptions are:

Assumption 1. The exact field variables have volume averages
over the UC. For example, if ui and /m are the exact displacements
and magnetic potential within the UC occupying a volume X, there
exist vi and wm such that (here and throughout the paper, Latin
indices assume 1, 2, and 3 and repeated indices are summed over
their range except where explicitly indicated.)

v i ¼
1
X

Z
X

uidX � uih i ð1Þ

wm ¼ 1
X

Z
X

/mdX � /mh i ð2Þ

Assumption 2. The effective material properties obtained from
the micromechanical analysis of the UC are independent of the
geometry, the boundary conditions, and loading conditions of the
macroscopic structure, which means that effective material prop-
erties are assumed to be the intrinsic properties of the material
when viewed macroscopically.

Note that these assumptions are not restrictive. The mathemat-
ical meaning of the first assumption is that the exact solutions of
the field variables can be integrated over the domain of UC, which
is true almost all the time and the very basic requirement for us to
perform the homogenization. The second assumption implies that
we will neglect the size effects of the material properties in the
macroscopic analysis, which is an assumption often made in the
conventional continuum mechanics necessary for the definition
of material properties. Of course, the micromechanical analysis of
the UCs is only needed and appropriate if h/l� 1 (h as the charac-
teristic size of the UC and l as the characteristic wavelength of the
deformation of the structure). Other assumptions such as particu-
lar geometry shape and arrangement of the constituents, specific
boundary conditions applied to the UC, and prescribed relations
between local fields and global fields are not necessary for the
present study.

In VAMUCH, both the multiscale asymptotic series and the peri-
odic boundary conditions are derived from the asymptotic analysis
of the governing functional. This new micromechanical modeling

approach has been successfully used to predict the effective ther-
moelastic properties including the elastic constants, specific heats,
and coefficients of thermal expansions, and effective thermal con-
ductivity and associated local fields [17–19]. It is also applied to
accurately predict the initial yielding surface and elastoplastic
behavior of metal matrix composites [20]. Since the procedure is
quite similar, the authors have chosen to repeat some formulae
and text from their previous publications in order to make the
present paper more self-contained.

2. Magnetostrictive materials and its constitutive relation

The elastic and the magnetic responses are coupled in magneto-
strictive composite materials where the mechanical variables of
stress and strain are related to each other as well as to the mag-
netic variables of magnetic field and magnetic displacement. The
coupling between mechanical and magnetic fields is described by
piezomagnetic coefficients. Using the conventional indicial nota-
tion, the linear coupled constitutive equations can be expressed as:

rij ¼ Cijkl�kl � qijkHk;

Bi ¼ qikl�kl þ likHk

ð3Þ

where rij, �ij, Hi, and Bi are the stress tensor, strain tensor, magnetic
field vector, and the magnetic displacement vector, respectively.
Cijkl denotes fourth-order elasticity tensor at constant magnetic
field, lij is the second-order magnetic tensor at constant strain field,
qijk is the third-order piezomagnetic coupling tensor.

Based on the representation of Li [6], Eq. (3) can be represented
in a single constitutive relations asX

iJ

¼ EiJMnZMn ð4Þ

where

X
iJ

¼
rij J ¼ 1;2;3
Bi J ¼ 4

�
ð5Þ

EiJMn ¼

Cijmn J;M ¼ 1;2;3
qnij J ¼ 1;2;3; M ¼ 4
qimn J ¼ 4; M ¼ 1;2;3
�lin J;M ¼ 4

8>>><
>>>: ð6Þ

ZMn ¼
emn M ¼ 1;2;3
�Hn M ¼ 4

�
: ð7Þ

Nomenclature

vi, wm the global displacement and global magnetic displace-
ment, respectively

ui, /m the displacement field and magnetic potential field
defined in the integer space, respectively

~ui; ~/m the displacement field and magnetic potential field
defined in the 3D space, respectively

X a volume occupied by the UC
h characteristic size of the UC
l characteristic wavelength of the deformation of the

structure
rij, eij stress tensor and strain tensor, respectively
Hi, Bi magnetic field vector and magnetic displacement vector,

respectively
H magnetic enthalpy
D matrix containing all the necessary material constants
C elastic constants matrix
q piezomagnetic coefficients matrix
l magnetic permeability matrix

ki, km, aij, bi Lagrange multiplies introduced to enforce the con-
straints

x global coordinate to describe the macroscopic struc-
ture

y local coordinate to describe the UC
n integer-valued coordinate to locate a UC in the

heterogeneous material
wi, wm the fluctuation functions
S the shape functions
V a column matrix of the nodal values of fluctuation

functions
di dimension of a UC
Si surfaces with ni = 1
R 3D space
D effective (or homogenized) material matrix
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