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a b s t r a c t

This paper investigates the dynamic behavior of moderately thick composite plates of arbitrary shape
using the Generalized Differential Quadrature Finite Element Method (GDQFEM), when geometric dis-
continuities through the thickness are present. In this study a five degrees of freedom structural model,
which is also known as the First-order Shear Deformation Theory (FSDT), has been used. GDQFEM is an
advanced version of the Generalized Differential Quadrature (GDQ) method which can discretize any
derivative of a partial differential system of equations. When the structure under consideration shows
an irregular shape, the GDQ method cannot be directly applied. On the contrary, GDQFEM can always
be used by subdividing the whole domain into several sub-domains of irregular shape. Each irregular ele-
ment is mapped on a parent regular domain where the standard GDQ procedure is carried out. The con-
nections among all the GDQFEM elements are only enforced by inter-element compatibility conditions.
The equations of motion are written in terms of displacements and solved starting from their strong for-
mulation. The validity of the proposed numerical method is checked up by using Finite Element (FE)
results. Comparisons in terms of natural frequencies and mode shapes for all the reported applications
have been performed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, plate structures have been investigated by sev-
eral researchers because plates are used as common structural
components in civil, mechanical and aerospace engineering sec-
tors. In particular, studies dealing with the dynamic behavior of flat
plates are widely documented in literature [1–5]. Cracked rectan-
gular isotropic plates have also been investigated and several con-
vergence studies involving cracks and slits appeared in recent
papers [6–9] and in papers published over the past decades [10–
12]. Concerning the free vibration of laminated composite plates,
the well-known First-order Shear Deformation Theory (FSDT)
[13,14] is used. It should be underlined that relatively few pub-
lished results are available for cracked plates with general bound-
ary conditions. Over the years both the Finite Element Method
(FEM) and the Ritz method have been used to work out numerical
results [6–9,15–17]. Unlike the FEM, literature solutions do not
consider the stress singularities at the crack tip. The Ritz method
is suitable for solving vibration problems of simple geometry
plates. It cannot be applied to arbitrarily shaped plates. In order
to solve a problem with arbitrary boundary conditions and any

kind of discontinuity through the thickness of the composite struc-
ture, a new numerical procedure named Generalized Differential
Quadrature Finite Element Method (GDQFEM) is proposed in this
work. This advanced numerical tool, which involves several sub-
domains of generic shapes, combines the strong formulation of a
finite difference scheme and the general application of a finite ele-
ment method. In this paper, the numerical implementation of the
GDQFEM is used to analyze the free vibrations of arbitrarily shaped
composite plates with cracks and slits [18–41]. To the best knowl-
edge of the authors, no one has ever investigated the problem at
issue. The GDQFEM is based on the Generalized Differential Quad-
rature (GDQ) method [18,42–77], which is a very fast and efficient
methodology to solve systems of partial differential equations with
associated boundary values. When the problem domain is rectan-
gular, or more generally regular, the method can be easily applied
to thick and thin plates, as well as to revolution shells, doubly
curved shells, shells of translation and shallow shells [42–54,60–
65,68–70,72–74]. It is underlined that, in practical applications,
when the physical domain is usually complex, the GDQ method
cannot be directly applied whereas the multi-domain technique
can be used, also taking into account the presence of
discontinuities.

As far as the domain decomposition is concerned, there are two
basic approaches. The first method is called the multi-domain GDQ
approach, in which the whole domain is simply decomposed into
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regular sub-domains. The second approach is based on a coordi-
nate transformation procedure, where the generic shaped element
in the actual coordinate system is transformed into a regular do-
main. The mapping approach follows exactly the same rules of
the FEM. The only difference between them is that the transforma-
tion equations in the GDQFEM are based on the strong formulation,
whereas the FEM is based on the weak form of the equations of
motion.

2. Theoretical formulation

In this paper a First-order Shear Deformation Theory (FSDT) for
plates has been implemented. This theory is also known as Reiss-
ner–Mindlin (RM) theory, due to the researches by Reissner [13]
and Mindlin [14]. The main characteristic of this structural model
is that it deals with a three dimensional problem of a plate as if it
only were bi-dimensional. In fact, the plate geometry is described
starting from its middle surface, which divides the plate thickness
h into two equal parts. Since a composite laminate plate consisting
of l layers is considered in the following, the total plate thickness
can be expressed as

h ¼
Xl

k¼1

hk ð1Þ

where hk is the thickness of the generic lamina k. The generalized
application of FSDT to laminated plates has been extensively de-
scribed by Reddy [5]. In this section, the main sets of equations
which characterize laminated FSDT plates are summarized. In order
to understand the merit and the limitation of the RM linear theory,
the chief hypotheses on which the theory is based are examined. As
it is well-known, the hypotheses at issue can be described by using
the following restrictions on plates

1. the plate deflections are small and the strains are
infinitesimal;

2. the transverse shear deformation is not negligible, and nor-
mal lines to the reference surface of the plate before defor-
mation do not remain normal after deformation. The
contribution of transverse shear stresses can be large;

3. the normal strain is assumed to be equal to zero: ez(x, y,
z) = 0;

4. the plate is moderately thick, therefore it is possible to
assume that the normal stress is negligible so that the
plane assumption can be invoked: rz(x, y, z) = 0;

5. the linear elastic behavior of the material is supposed.

From numerical applications, it has been shown that the RM
theory is in good agreement with the results obtained from 3D
elasticity until the geometrical ratio h/L satisfies the following
condition
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where L indicates the shortest dimension of the plate under consid-
eration. The FSDT considers five independent degrees of freedom.
They are defined upon the middle surface of the plate and are con-
stant through the thickness. The RM theory is also called the linear
theory, because the displacements U and V are considered linear
through the thickness, whereas the vertical displacement W is kept
constant

Uðx; y; zÞ ¼ uðx; yÞ þ zbxðx; yÞ
Vðx; y; zÞ ¼ vðx; yÞ þ zbyðx; yÞ
Wðx; y; zÞ ¼ wðx; yÞ

ð3Þ

It appears from Eq. (3) that the 3D displacements U, V and W are
function of the 3D Cartesian coordinates, whereas the middle sur-
face parameters u, v, w, bx, by only depend on x and y coordinates.

From the RM displacement model (3), the three dimensional
strain–displacement relationships are applied to obtain

ex ¼
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þ z

@bx
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ð4Þ

The strain components derived in Eq. (4) link the strain characteris-
tics e0

x ; e0
y , c0

xy; kx; ky; kxy; cx, cy to the middle plane displacement
parameters u, v, w, bx and by. It can be noticed that e0

x ; e0
y and c0

xy

are the in plane normal and shear deformations, respectively, kx,
ky and kxy are the plate curvatures, cx, cy are the out of plane shear
deformations of the plate.

The relationship between stresses and strains is established
through the constitutive equations, where the materials under
consideration have linear elastic properties. In order to study thick
laminated composite plates, a perfect bonding between layers is
considered [5,71].

1. The bonding between layers is perfect (there is no flaw or gap
between layers).

2. The bonding is non-shear-deformable (no lamina can slip rela-
tively to another).

3. The bonding strength is as strong as it needs to be (the laminate
behaves as a single lamina with special integrated properties).

4. The shear stresses at the top and the bottom of the plate are
equal to the top and bottom external shear loading.

The last hypothesis derives from the fact that the starting 3D
problem is turned into a bi-dimensional model, defined upon the
middle surface of the plate. Using the hypotheses of the FSDT,
the normal strain en and the normal stress rn are negligible and
only eight constitutive equations will be considered.

The stress resultants, which are defined as the integral of the
corresponding stress components along the plate thickness, are re-
lated to the connected strain characteristics as follows
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The material stiffness parameters AðsÞij depend on the elastic coeffi-
cients Q ðkÞij and are defined as

AðsÞij ¼
Xl

k¼1

Z fkþ1

fk

Q ðkÞij fsdf; s ¼ 0;1;2 ð6Þ
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