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a b s t r a c t

Most of the existing plate elements assume constant transverse displacement across the thickness result-
ing in zero transverse stretch deformation. This study presents a new triangular finite element for mod-
eling thick laminates and sandwich panels based on the {2,2}-order refined zigzag plate theory. It adopts
quadratic through-thickness variation of the in-plane and transverse displacement components. The
transverse normal strain is calculated based on the assumption of cubic representation of the transverse
normal stress. The zigzag functions are piecewise linear through the thickness. The element consists of 3
corner nodes and 3 mid-side nodes along the edges. Each corner and mid-side node has 11 and 3 degrees
of freedom (DOF), respectively. This C0 continuous element is free of geometric locking, and does not
require shear correction factors. It provides robust and accurate prediction of all six stress components
(in-plane and transverse normal and shear stresses) in the analysis of highly heterogeneous laminates
and sandwich plates.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A wide variety of modern civilian and military aircraft use fiber-
reinforced laminates and sandwich panels for primary load-bear-
ing structures. The use of adhesives (resin) is unavoidable when
fabricating and constructing composite parts. As shown in Fig. 1,
there commonly exist strong fiber-rich and weak resin-rich layers
through the thickness; thus, failure can occur in multiple locations:
core/face sheet interface, laminae interface and core. Component
level structural testing and analysis is prohibitively expensive
and time consuming. Instead, using robust and accurate computa-
tional tools complemented by experiments at key stages of the de-
sign is a viable and cost-effective option.

The stress state in a composite laminate or a sandwich panel is
dependent on the loading conditions, fiber- and resin-rich layer
thickness, face-sheet lay-up, core thickness and process-dependent
properties. Understanding the behavior of such structures can re-
sult in weight and cost savings by designing against unnecessary
conservatism. Finite element analysis (FEA) is widely utilized to as-
sess the strength of such structures. However, an extremely de-
tailed finite element discretization becomes necessary to model
for all of the potential failure modes. Through-the-thickness
finite element discretization using traditional elements is often

impractical because it requires an extremely high mesh density
to maintain a proper aspect ratio between the elements in the fi-
ber-rich and resin-rich layers.

To evaluate the strength of a composite structure with a high
degree of fidelity, it is first essential to predict accurate stress
and strain fields, and then utilize a computationally efficient and
accurate progressive damage model. For these reasons, a robust
and accurate element that accounts for the discrete nature of fi-
ber-rich and resin-rich layers of each ply as well as the variation
of stiffness and strength properties of the core is necessary in the
finite element analysis.

In order to achieve computationally robust and yet accurate fi-
nite element models for thick laminates as well as sandwich plates,
investigators have focused on two types of elements, which are (1)
the elements based on higher order plate theories and (2) the ele-
ments whose in-plane displacement filed is enhanced by zigzag
theories. In elements derived based on higher order plate theories,
the through-the-thickness variation of in-plane and transverse dis-
placement fields of the plate are expanded in the form of quadratic
or higher order polynomials or by employing trigonometric func-
tions. These expansions enable the element to capture transverse
shear deformations or both transverse shear and normal deforma-
tions with reasonable accuracy and computational cost. Reddy [1]
presented a review of all the existing third-order theories and
showed that they are indeed special cases of his third-order plate
theory [2], in which the in-plane displacement components are
cubic through-the-thickness expansions, yielding a quadratic
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variation of transverse shear strains, and the transverse displace-
ment component is constant through the thickness, excluding the
transverse normal deformations. While this formulation is applica-
ble to plates with simply supported boundary conditions [3], it
yields physically unacceptable zero transverse-shear strains when
both in-plane displacement components are fixed along the plate
edges, as pointed out by Murty [4]. This shortcoming was remedied
by decomposing the transverse displacement component into sep-
arate parts for the displacements associated with bending and
shear deformations and has been applied successfully to stress
[4,5], buckling [6], and large deflection analyses [1,7,8] of isotropic
and laminated plates. An alternative to decomposing the trans-
verse displacement field in order to avoid zero transverse shearing
along fixed-edge boundaries was proposed by Voyiadjis and Shi [9]
for thick cylindrical shells and later reduced to plate kinematics by
Shi [10]. In this alternative approach, average displacement and
slope variables were utilized that produce an equivalent transverse
shear strain energy density. Similarly, Barut et al. [11] adopted the
use of average displacements and slopes around plate boundaries
by using Reissner’s weighted-average displacement and slope def-
initions [12].

Other forms of higher-order theories for plates and shells were
also proposed. For example, Soldatos and Timarci [13] and Timarci
and Aydogdu [14] employed higher-order theories based on poly-
nomial, trigonometric, hyperbolic, and exponential expansions of
in-plane displacements through the thickness and compared their
relative accuracy in stress and buckling analyses of plates and
shells. Xiaoping and Liangxin [15] introduced a third-order shear
deformation theory that satisfies continuity of in-plane displace-
ments and transverse shear stresses between adjacent layers.
However, their representation of the displacement variables
resembles that of first-order shear deformation theory (FSDT). Re-
cently, Ray [16] extended the zeroth-order shear deformation the-
ory (ZSDT) of Shimpi [17] to perform vibration analysis of simply
supported laminated composites. Because of the cubic and con-
stant through-the-thickness expansions used for the representa-
tion of, respectively, the in-plane and transverse displacement
components, the ZSDT of Shimpi and Ray is a special case of the
form introduced by Timarci and Aydoglu [14].

Tessler [18] and Tessler and Saether [19] introduced a second-
order shear-deformation theory that includes quadratic expan-
sions of transverse shear deformations and a linear expansion of
transverse normal deformations through the thickness; their for-
mulation was later on extended to account for geometric nonlin-
earity by Barut et al. [20]. Similarly, Reddy [1] and Barut et al.
[21] formulated third-order plate theories for thick laminates, tak-
ing into account both transverse normal and shear deformations,
as well as cubic variation of in-plane deformations. Although
extensive effort were devoted to the development of higher order

plate theories in the past, they generally suffer from either incom-
plete representation of the stress fields or the fact that they require
transverse shear correction factors particularly for composite
materials.

Zigzag theories were developed particularly to increase the
accuracy of stress fields in layered composite materials. The poly-
nomial expansions of in-plane displacements defined across the
entire thickness are enhanced by piecewise linear approximations
(zigzag variations) in each layer. These additional zigzag terms pro-
vide more realistic representation of in-plane deformations in lam-
inated composites as well as sandwich structures. The early
development of zigzag theories [22–32] suffered from the undesir-
able vanishing condition of transverse shear deformations along
clamped boundaries and C1-continuity requirement in finite ele-
ment approximations [27].

In order to eliminate these shortcomings, Tessler and his co-
workers [33–38] recently introduced the Refined Zigzag Theory
(RZT). In their work, the polynomial approximation is based on the
FSDT and the zigzag functions are derived by taking into account
the transverse shear stiffness of each ply. While this approach re-
sults in discontinuous variations of transverse shear stresses along
ply interfaces, they provide more accurate values of transverse shear
stresses at the ply level, and the transverse shear strains do not van-
ish along clamed boundaries. Furthermore, the strains are defined in
term of first derivatives of the kinematic variables; thus, allowing
C0-continuous finite element implementation.

Although the previous RZT studies are robust in representing in-
plane as well as transverse shear deformations without requiring
any transverse shear correction factor, their kinematic representa-
tions do not account for transverse stretching along the thickness
of plates. Recently, Barut et al. [39] extended the Refined Zigzag
Theory (RZT) introduced by Tessler et al. [36] to determine all six
stress and strain components. In the extended RZT, the in-plane
displacements are expanded in the form of piecewise quadratic
functions, while the transverse displacement component is ex-
panded with a quadratic polynomial through the thickness of the
plate. Hence, the extended theory is defined by the notation of
RZT{2,2}, in which the first and second superscripts denote the order
of expansions used for the in-plane and transverse displacement
components, respectively. Based on this notation, the previous zig-
zag theory by Tessler et al. [36] is described as RZT{1,0}. The dis-
placement assumptions in RZT{2,2} involve eleven kinematic
variables. As in the development of {1,2}-order plate theory by
Tessler [19] and {3,2}-order single-layer plate theory by Barut
et al. [40], the extended RZT also independently assumes a cubic
variation through the thickness for the transverse normal stress
component.

This study presents a new C0 continuous triangular plate finite
element based on RZT{2,2}. The element consists of 3 corner nodes
and 3 mid-side nodes along the edges. Each corner and mid-side
node has 11 and 3 degrees of freedom (DOF), respectively. The ele-
ment referred to as RZE{2,2} employs anisoparametric shape func-
tions; thus, it is free of geometric locking. The element does not
require shear correction factor because RZT{2,2} assumes constant
shear strain variation within each layer. As a result, it does not vio-
late its expected parabolic distribution, and does not require shear
correction factors. Also, the higher order kinematics in RZE{2,2}

leads to improved in-plane, transverse shear and bending behavior.
The zigzag functions developed by Tessler and his co-workers
[33–38] include individual layer shear rigidity, and their slopes
when summed through the thickness vanishes. The element
permits highly detailed modeling of each ply (fiber- and resin-rich
layers regardless of the number of plies in the face sheets) as well
as the non-homogeneous modulus of the core. Unlike the existing
finite elements for composite laminates and sandwich panels, this
new element provides robust and accurate predictions of all six
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Fig. 1. Fiber-rich and resin rich layers in a laminate.
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