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A B S T R A C T

The strength loss of clays subjected to seismic loading is a crucial factor promoting slope instability. This paper
proposes a constitutive modeling strategy to simulate accurately the development of pore pressure in cyclically
loaded clays, i.e. one major factor responsible for strength deterioration during earthquakes. For this purpose, an
enhanced plastic flow rule is proposed within the bounding surface framework to represent the cyclic behavior of
reconstituted and/or weakly structured clays. The verification of the model against experimental evidence shows
that the proposed flow rule improves the accuracy with which sign and magnitude of the pore pressure incre-
ments are computed.

1. Introduction

Clay slopes have failed spectacularly as a result of large earth-
quakes. A notable example are the landslides that took place in
Anchorage as a result of the Alaskan earthquake of 1964 [54], for which
the strength loss of facie III of the Bootlegger Cove Formation (BCF)
clays has been recognized as a critical factor for failure initiation
[54,21,37,61]. Similar evidence of strength loss due to seismic shaking
have frequently been reported in a variety of geotechnical contexts
[36,7,10], thus emphasizing the importance of accurately quantifying
the strength deterioration of natural clays for purposes of hazard pre-
vention and/or mitigation.

A common idealization of the mechanical behavior of natural clays
involves the interaction between structure degradation (e.g., alterations
of bonds and fabric) and unstructured clay matrix (i.e., the main factor
controlling the response of clays in their reconstituted state) [8,32]. For
this reason, Burland [8], Rampello [47] and Callisto and Calabresi [9]
used the response of reconstituted clays as a reference to interpret the
mechanical behavior of natural materials tested in the laboratory. Si-
milarly, numerous constitutive models aimed at simulating the en-
gineering response of natural clays [20,35,67,59,48] are essentially
enhancements of baseline relationships originally conceived for re-
constituted clays [51,49,17]. As a consequence, an efficient re-
presentation of the intrinsic behavior of cyclically loaded clays can be
regarded as a mandatory step prior to the assessment of strength loss in
any type of naturally structured geomaterial.

Many constitutive modeling frameworks have been proposed to
replicate important features of intrinsic clay behavior under cyclic
loading. Noticeable examples include multisurface plasticity, which

embraces the concept of kinematic hardening [45,38,39,57,18], sub-
loading surface plasticity [25], and finally bounding surface plasticity
[4,28,33,53]. This work will be focused on the last framework, due to
its mathematical simplicity (e.g., it usually requires defining only one
surface) and its significant success in representing the cyclic behavior of
soils.

Bounding surface models commonly use plastic flow characteristics
defined at an image stress point (i.e., a projection of the current stress
state on the outer bounding surface), which hereafter will be referred to
as image stress flow rules. While convenient, image stress flow rules may
underestimate the magnitude of pore pressure build-up during cyclic
loading [52,56]. The influence of this discrepancy can be significant, in
that the low effective stress arising when large pore pressure accumu-
lates, as well as the corresponding reduction in stiffness and strength,
likely are significant factors for catastrophic failures. To mitigate these
shortcomings, this work uses experimental evidence to propose a new
hybrid flow rule, i.e. a plastic strain operator which explicitly depends
on flow characteristics determined both at image and current stress state.
Although the proposed flow rule can be incorporated into any bounding
surface constitutive law, here the model developed by Seidalinov and
Taiebat [53] is used as a platform to assess its performance. This choice
is motivated by the successful application of the aforementioned model
to several clays [53], and it will facilitate a straightforward discussion
of the benefits emerging from the use of the enhanced plastic flow rule.
To test the capacities of the proposed flow rule, the model has been
verified against laboratory evidence available for Georgia kaolin [55]
and BCF clay [68,19,69], i.e. two clays which have been tested under
the effect of widely different stress histories prior to cyclic loading.
Furthermore, to capture the nonlinearity of cyclically loaded soils at
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both small and large strain levels, the hybrid flow rule has been used in
combination with two additional model components, namely: (i) a
small-strain elastic law [5] accounting for hysteretic effects at small to
medium cyclic strain levels (e.g., −10 5– −10 2); and (ii) a new expression
of plastic modulus able to compute accurately the plastic strains that
may lead to either ratcheting (i.e., strain rates that grow with the
number of loading cycles) or shakedown (i.e., vanishing plastic effects
after a large number of cycles) [50,55,71].

2. Formulation of the Seidalinov and Taiebat model

This section summarizes the key features of the model proposed by
Seidalinov and Taiebat [53], which will be used as a platform to in-
corporate the new model components detailed in Section 3. Since the
intrinsic clay behavior is the focus of this work, the destructuration
mechanism in the original formulation by Seidalinov and Taiebat [53]
is not considered. For the sake of simplicity, the constitutive relations
are discussed with reference to axisymmetric stress conditions. For this
purpose, the model is defined in terms of mean effective stress,

= +p σ σ( 2 )/3a r , and deviatroic stress, = −q σ σ( )a r , thus using the vo-
lumetric strain, = +ε ε ε2v a r , and deviatoric strain, = −ε ε ε2( )/3d a r , as
their work-conjugate counterparts. Subscripts a and r denote axial and
radial components, while v and d denote volumetric and deviatoric
terms, respectively. All the stress variables are regarded as effective
stresses and a compression positive convention is used for both stress
and strain measures. To facilitate the implementation in numerical
codes, the model generalization for multiaxial stress conditions is pro-
vided in Appendix.

2.1. Bounding surface and image stress

The yield surface proposed by Dafalias et al. [17] is adopted as
anisotropic bounding surface. The latter can be represented in triaxial
stress space as a rotated and distorted ellipse (Fig. 1(a)) characterized
by the following expression:

= − − − −F q p α N α p p p( ) ( ) ( )2 2 2
0 (1)

The size of the bounding surface is determined by p0, which grows
or shrinks in proportion to plastic volume change in the same way as
the Modified Cam-Clay (MCC) model [49]. Another internal variable, α,
governs the rotation and distortion of the bounding surface, and re-
presents the degree of plastic anisotropy. While in a general three-di-
mensional context, α would be represented by a second-order tensor,
reference to axisymmetric conditions allows to describe it as a scalar, in

that its principal directions coincide with those of the effective stress
tensor. The model constant N denotes the stress ratio (i.e., =η q p/ ) at
the peak of the bounding surface. Note that Seidalinov and Taiebat [53]
assumes equal N regardless of mode of shearing due to the applied
incremental loading path, which is distinguished by the position of the
image stress relative to the rotation axis α (i.e., triaxial compression if

⩾q p α and triaxial extension if <q p α). In contrast, this work assumes
that the value of N depends on the mode of shearing (i.e., =N Nc for
triaxial compression and =N Ne for triaxial extension, where Nc and Ne
are model parameters).

The variables p and q in Eq. (1) refer to the image stress shown in
Fig. 1(a). The image stress is determined by the radial mapping rule
proposed by Dafalias [14]. As shown in Fig. 1(a), a projection center,
p q( , )c c , is used to map radially the current stress, p q( , ), to p q( , ) on the
bounding surface. Mathematically, this relation can be expressed as:

= + − = + −p p b p p q q b q q( ); ( )c c c c (2)

where b varies from 1 to∞, with these two end-members being attained
when the current stress coincides with either the image stress ( =b 1) or
the projection center ( = ∞b ). Following Dafalias [14], the loading
direction at the current stress is assumed to be the gradient of the
bounding surface at the image stress (i.e., L shown in Fig. 1(a)).

2.2. Plastic flow rule and plastic potential surface

Seidalinov and Taiebat [53] employs an image stress flow rule, and
accordingly defines the gradient of the plastic potential at the image
stress (i.e., Ri in Fig. 1(b)) as the direction of the plastic strain incre-
ment. A plastic potential =g 0 which is different from the bounding
surface is used, thus resulting in an non-associative flow rule. The
plastic potential can be expressed as:

= − − − −g q p α M α p p p( ) ( ) ( )g g
2 2 2

(3)

where pg is a dummy variable so that the plastic potential surface can
pass through the image stress. The parameter M is the stress ratio at
critical state and =M Mc if ⩾q p α and =M Me if <q p α, where Mc
and Me denote the critical state stress ratio in triaxial compression and
extension, respectively. The volumetric and deviatoric components of
the plastic flow direction (i.e., Rv

i and Rd
i in Fig. 1(b), respectively) can

be accordingly given by:
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where η is the stress ratio defined at the image stress.

Fig. 1. Schematic diagrams of: (a) bounding surface and radial mapping; (b) plastic flow vectors at the current stress (Rc) and image stress (Ri).
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