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This paper describes a computational framework for the numerical analysis of quasi-static soil-structure insertion
problems in water saturated media. The Particle Finite Element Method is used to solve the linear momentum
and mass balance equations at large strains. Solid-fluid interaction is described by a simplified Biot formulation
using pore pressure and skeleton displacements as basic field variables. The robustness and accuracy of the
proposal is numerically demonstrated presenting results from two benchmark examples. The first one addresses

the consolidation of a circular footing on a poroelastic soil. The second one is a parametric analysis of the cone
penetration test (CPTu) in a material described by a Cam-clay hyperelastic model, in which the influence of
permeability and contact roughness on test results is assessed.

1. Introduction

Many activities in geotechnical engineering (probing, sampling, pile
installation...) involve the insertion of a rigid body into the soil. In this
kind of problem, large displacements and deformations of the soil mass
always occur. The coupled hydro-mechanical response of the soil adds
further complexity, even in cases where insertion speed is tightly con-
trolled. Analysis of problems of rigid body insertion into soil masses had
traditionally relied on highly idealized approaches such as geome-
trically simple cavity expansion mechanisms [60]. Although much in-
sight is gained from such analyses, a number of basic features of the
problem are left aside and, as a consequence, a host of not fully un-
derstood empirical corrections and methods have been relied upon for
practical applications. Current interpretation of CPTu results
[29,49,46] is a clear example.

Numerical simulation seems an obvious alternative to advance un-
derstanding in this area. However, the numerical simulation of rigid
body insertion into soils is a complex task because the system exhibits
many non-linearities, contact-related, material-related and also geo-
metrical. The geometrical non-linearity was a fundamental obstacle to
the Lagrangian formulations of the finite element method (FEM) that
are successful in other areas of geotechnical engineering. Strong mesh
distortion resulted in large inaccuracies and/or stopped calculation at
relatively small displacements [15].

In the last decades several numerical frameworks have been de-
veloped to address those problems. Some approaches are not based on
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continuum mechanics and use instead discrete element methods [1,12].
Continuum-based approaches are however dominant, particularly for
fine-grained soils. Within continuum-based methods the approach most
frequently applied to geotechnical insertion problems has been that of
Arbitrary Lagrangian-Eulerian formulations (ALE). ALE finite element
formulations combine the Lagrangian and Eulerian kinematic descrip-
tions, by separately considering material and computational mesh
motions [17]. Several slightly different ALE methods have been applied
in geomechanics; a comparative review was recently presented by
Wang et al. [56].

A second continuum-based numerical framework is that of the
Material Point Method (MPM). A set of particles (material points) move
within a fixed finite element computational grid. Material points carry
all the information (density, velocity, stress, strain, external loads...)
which, at each step, is transferred to the grid to solve the mechanical
problem. The computed solution allows updating of position and
properties of the material points. Several implementations of MPM have
been already used to model rigid body insertion into soils [52,10,11].

The Particle Finite Element Method (PFEM) is a third continuum-
based approach that seems suitable to address geotechnical insertion
problems. PFEM is actually an updated Lagrangian approach, but one
that avoids mesh distortion problems by frequent remeshing. The nodes
discretizing the analysis domain are treated as material particles the
motion of which is tracked during the numerical solution. Remeshing in
PFEM is based in Delaunay tessellations and uses low-order elements.
PFEM was first developed to solve fluid-structure interaction problems
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[42] and then extended to other areas, like erosion, solid-solid inter-
action and thermo-plastic problems [41,47].

Within geomechanics, PFEM was initially applied to tool-rock in-
teraction problems by Carbonell et al. [6,7]. Later, Salazar et al. [48],
extended that code to include Bingham-like rheology to model flow-
slides. Zhang et al. [61,62] have also used PFEM in the context of soil
flow problems.

G-PFEM is a PFEM-based code for the analysis of solid insertion
problems in soils. G-PFEM has been implemented into Kratos [14], an
object-oriented multi-disciplinary open-access platform for numerical
analysis tool development. Previously [31], the authors have demon-
strated the good performance of G-PFEM in total stress analysis. In
Monforte et al. [33], the numerical stabilization techniques that un-
derpin the method, both for the single phase and for two-phase cases,
were presented in detail.

This work documents G-PFEM developments to model two-dimen-
sional coupled hydromechanical problems for water-saturated soils in
quasi-static conditions. Some initial developments along this line were
briefly illustrated by Monforte et al. [32] and Gens et al. [19]. The
paper is structured in two main sections. The first one presents the main
features of the numerical method: governing equations, discretization,
stabilization and mixed formulations, constitutive relations and the
contact model. The second one illustrates the performance of the
method in two reference problems: consolidation of a circular footing
loading a poroelastic soil and CPTu insertion into a modified cam clay
soil of varying permeability.

2. Numerical model
2.1. PFEM

PFEM is a mesh-based continuum method: the solution is computed
in a finite element mesh built with well-shaped low order elements.
This computational mesh evolves during problem solution by means of
frequent remeshing. A cornerstone of the PFEM implementation used
here is an efficient remeshing strategy [42]. Basic tasks used in that
strategy include adaptive inclusion of new nodes, Delaunay tessellation
based on nodes and element smoothing. A Lagrangian description of the
continuum is used and information between meshes is transferred using
interpolation algorithms. This general PFEM scheme is enriched with
the inclusion of rigid bodies of specified motion that may contact, pe-
netrate and reshape the discretized continuum.

Although it is not strictly necessary (e.g. [61]), low order finite
elements are typically used in PFEM: linear triangles in two-dimen-
sional models and linear tetrahedra in three dimensions. Linear inter-
polated elements have several advantages based on their simplicity:
particles usually define exclusively the mesh nodes and no additional
interpolations are needed after remeshing. The computational cost is
also reduced with respect to high-order elements, even if stabilized
mixed formulations are required.

The interpolation of state variables plays a crucial role in the ac-
curacy of the results. To avoid excessive smoothing of internal vari-
ables, information is transferred from the previous Gauss points to the
new ones. In this work, a nearest neighbor interpolation procedure is
used; hence, new integration points inherit the information of the closer
Gauss point of the previous mesh. This strategy ensures that informa-
tion is maintained in elements that do not change during the meshing
process. When new particles are inserted in the domain, variables are
linearly interpolated from those of the previous mesh element. More
details about remeshing and interpolation in PFEM can be found else-
where [31,47].

PFEM has some commonalities with some ALE methods previously
used in geomechanics, like the remeshing and interpolation technique
by small strain (RITSS) [23] or the so-called efficient ALE approach
(EALE) [39]; a discussion of similarities and differences with those
techniques may be found in Monforte et al. [31].
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2.2. Governing equations

We consider only water saturated soils. They are modeled as a two-
phase continuum employing a finite deformation formulation. The
equations of linear momentum and mass of the mixture are written
following the movement of the solid skeleton, considering as unknown
fields the solid skeleton displacements and fluid pressure. This is the u-
pw formulation, an approximation of the generalized Biot equations
valid at moderate velocities [63]. For pseudo-stationary cases, these
equations may be expressed as [4,24]:

Vo+p,8=0 in Q; x (0,T)
By + Vv + V=0 inQ x(07)
u(X,t =0) =u, in Q
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p,X.,t) =p, in Iy X (0,T)
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where o = o’—p, 1 is the total Cauchy stress tensor, o’ = o (F,V) is the

effective Cauchy stress tensor, &' stands for the appropriate constitutive
equation for path dependent materials, F is the total deformation
gradient whereas V' represents the set of internal variables of the con-
stitutive model. p,, is the spatial description of the soil density, defined

as p, = (1-9)p, + ¢p,, = % + %pw, o, and p, are the density of the
solid and water phase respectively. ¢ is the porosity, whose variations
changes in time due to deformation and it is actualized according to:
p=1-1 _J%, where ¢, is the initial state whereas J = det(F) is the Ja-
cobian between the initial state and the deformed configuration. It is
assumed that the solid phase is incompressible, whereas the water
phase is almost incompressible, with bulk volume stiffness given by K.

A Large strain generalization of Darcy’s law [8,24] is employed:

vi=—-k-(Vp,—0,8) )

where k is the permeability tensor. When permeability is anisotropic it
is advantageous to consider it constant in the material description and
rotate it following the solid skeleton deformation [24]. Anisotropic and
void-ratio dependent (Kozeny-Carman (Chapuis and Aubertin [9]))
permeability definitions have been implemented in G-PFEM [20] but
they are not considered further in here; all cases presented use a con-
stant isotropic value of permeability, denoted k.

2.3. Weak form and discretization

The weak form of Eq. (1) is obtained following standard procedures
[64], multiplying both field equations by a set of virtual displacements,
w, and virtual water pressure, q, integrating the equations over the
deformed domain, €, and applying the divergence theorem:

Jo, Z—V;(a;,.—pwa,-j)dgt = Jo, WiPnbidQ + fi witidy

Joy ol + 33900+ f, Sit5a0, = [ aijdy @

Note that the integration of the mass balance equation takes place
over the reference domain. This is not the only possibility and, for in-
stance, Borja and Alarcén [4] integrate the mass balance equation di-
rectly over the current configuration (in other words, multiplying the
equation by J) whereas Larsson and Larsson [24] formulate the mass
balance in terms of fluid content (i.e., scaling the equation by Jp,).

After obtaining the weak form of the balance equations, the discrete
equations of the hydromechanical formulation are obtained. First, let us
introduce the interpolants:
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