
Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research Paper

Large scale parallelisation of the material point method with multiple GPUs

Youkou Donga,⁎, Jürgen Grabeb

a Institute for Geotechnical and Construction Engineering, Hamburg University of Technology, Harburger Schloßstraße 20, 21079 Hamburg, Germany
bHead of Institute for Geotechnical and Construction Engineering, Hamburg University of Technology, Harburger Schloßstraße 20, 21079 Hamburg, Germany

A R T I C L E I N F O

Keywords:
Material point method
Parallel computing
Large deformation
Surface pipe penetration
Slurry runout

A B S T R A C T

The material point method (MPM), which is a combination of the finite element and meshfree methods, suffers
from significant computational workload due to the fine mesh required in spite of its advantages in simulating
large deformations. This paper presents a parallel computing strategy for the MPM with multiple Graphics
Processing Units (GPUs) to boost the method’s computational efficiency in large scale problems. Domain de-
composition method is used to split the workload over subdomains onto a number of GPUs. Communication
between the subdomains is implemented by the data transfer between GPUs and random access memory. On
each GPU the MPM algorithm is parallelised over nodes or particles. Benchmark problems of slurry runout and
surface pipe penetration are analysed to quantify the speedup of the multiple-GPU parallel simulations over the
sequential counterparts on the central processing unit. The maximum speedup with 1 GPU is 84 and increases to
∼1280 using 16 GPUs.

1. Introduction

The material point method (MPM), originating from the particle-in-
cell method in computational fluid dynamics [12] and extended to solid
mechanics by Sulsky et al. [23], can be regarded as a combination of
the Finite Element (FE) and meshfree methods. In MPM, the continuum
is discretised with a set of particles, and the history-dependent variables
such as stresses, material properties and velocities are inherited by the
particles. A background mesh is employed to update the state of the
particles without carrying any permanent information. Since the
background mesh is fixed in space, severe mesh distortion of the tra-
ditional FE methods in large deformation problems is avoided and
hence the frequent re-meshing is not necessary. Therefore the MPM has
been widely used to solve large deformation problems in geotechnical
engineering as an alternative to the conventional mesh-based methods,
such as the triggering, runout and impact on structures of submarine
landslides [10,11,21,24,26], the penetration of penetrometers [4,5]
and the pull-out of anchors [6,8].

Computational efficiency is a critical issue for the MPM to simulate
problems of large scales, such as transport of vast volumes of submarine
sediments and cone penetration test with penetration depth of more
than 20 times the diameter of the cone. The mesh used in the MPM
needs to be finer than in conventional FE analysis to achieve similar
accuracies, since the material particles are not always located at the
optimum positions for integration within the elements [3,25]. Cur-
rently, the MPM simulations are usually limited to small scale events or

within two dimensional framework. To promote the efficiency of the
MPM and enlarge the modelling scales, parallel computing on CPU or
single-GPU has been exploited by a limited number of researchers.
Huang et al. [14] and Zhang et al. [28] developed a single-CPU parallel
framework using a loop-based parallel library OpenMP. Parker [20] and
Ruggirello and Schumacher [22] presented a multiple-CPU parallel
framework with Message Passing Interface (MPI). And Dong et al. [9]
presented a parallel strategy on a single GPU based on the Compute
Unified Device Architecture (CUDA). The main difficulty in paralle-
lising the MPM is the potential data race between the computing cores
writing to the common memory address concurrently for the inter-
polation from particles to nodes. Huang et al. [14] and Zhang et al. [28]
categorised the particles in groups by domains and parallelised the
interpolation of the particles over the groups. In Parker [20] and
Ruggirello and Schumacher [22], the computational domain was de-
composed into subdomains; the MPM algorithm was parallelised over
the subdomains, while the interpolation of the particles in each sub-
domain was calculated sequentially. Dong et al. [9] generated a list of
the associated particles for each node, and parallelised the interpola-
tions over the nodes.

In this paper, a multiple-GPU parallel strategy for the MPM is de-
veloped using a hybrid MPI-CUDA framework. Domain decomposition
is performed with the MPI to distribute the workload over GPUs in
terms of subdomains. Intercommunication between the GPUs is im-
plemented for the neighbouring nodes and the particles moving out of
the original subdomains. For each subdomain on the corresponding

https://doi.org/10.1016/j.compgeo.2018.04.001
Received 5 February 2018; Received in revised form 8 March 2018; Accepted 1 April 2018

⁎ Corresponding author.
E-mail addresses: youkou.dong@tuhh.de (Y. Dong), grabe@tu-harburg.de (J. Grabe).

Computers and Geotechnics 101 (2018) 149–158

0266-352X/ © 2018 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2018.04.001
https://doi.org/10.1016/j.compgeo.2018.04.001
mailto:youkou.dong@tuhh.de
mailto:grabe@tu-harburg.de
https://doi.org/10.1016/j.compgeo.2018.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2018.04.001&domain=pdf


GPU, the MPM algorithm is parallelised with the CUDA based on the
parallel strategy presented in Dong et al. [9] with slight improvements.
Two benchmark cases, slurry runout after a dam break and surface pipe
penetration, are used to evaluate the performance of the multiple-GPU
parallel strategy. Acceleration of the multiple-GPU parallel simulations
over the CPU sequential counterparts is quantified in terms of speedup.
The overhead on the time-consuming operations is also investigated.

2. Parallelisation of MPM

To further boost the computational efficiency of the MPM on the
basis of the single-GPU parallelisation in Dong et al. [9], a multiple-
GPU parallel strategy of the MPM was developed using a hybrid MPI-
CUDA framework. The single-GPU parallelised program in Dong et al.
[9], based on an explicit integration scheme and Generalised Inter-
polation Material Point (GIMP) method [2], was transplanted from
Windows operating system to Linux as required by the high perfor-
mance computing cluster used. To validate the applicability of the
multiple-GPU computing strategy, interaction between a rigid structure
and soil mass was considered along with a fixed-boundary slurry
runout. Different to that in Dong et al. [9], the structure was described
as an analytical shape without necessity to be discretised into particles.
Therefore only one set of background mesh was generated [1] and the
data transfer between the CPU and GPU for the structural particles was
avoided. The contact was implemented using a technique termed ‘Geo-
contact’ in which a penalty function is incorporated into the GIMP to
minimise the computational noise on contact force [18]. The definitions
of the stresses and strains followed finite strain theory taking account of
incremental rotation of the configurations between time steps for ob-
jectivity: the stresses were measured with the Cauchy stress and up-
dated with the Jaumann rate, and the strains were calculated with the
logarithmic strain and updated with the deformation rate.

2.1. Functions of MPM

Prior to the introduction of the parallel strategy of the MPM, the
main functions within each incremental step and the manipulations
involved in the parallel computing are addressed briefly.

(i) The time step starts with the function ‘Initialisation of nodal vari-
ables’, which initialises the nodal variables of the soil, e.g. masses,
velocities, momenta and internal forces.

(ii) The function ‘Interpolation from particles to nodes’ is to interpolate
the masses, momenta and stresses of the associated particles to the
corresponding nodes, which may be summarised as

∑=m S mi
p

ip p
(1)

∑=M S m Vi
p

ip p p
(2)

∑= − ∇f S vσi
p

ip p p
int

(3)

where mi, Mi and fi
int represent the mass, momentum and internal force

at node i; mp, Vp, σp and vp are the mass, velocity, stress and volume of
particle p; Sip and ∇Sip are the shape function and its gradient at node i
evaluated at particle p; ∑p represents summation over all related par-
ticles.

(iii) The function ‘Calculate nodal velocities and accelerations’ is to
conduct the explicit calculation to obtain the velocities and ac-
celerations on the background mesh. At the commencement of the
current incremental step, the velocity at the node is

=V M
mi

i

i (4)

The acceleration for the current time step at node i is

=a
f
mi
i

i

int

(5)

Then at the end of the current time step the velocity for the node is

= +V V a tΔi i i
new (6)

where tΔ is the time increment. For the nodes in contact with a moving
rigid structure, Vi

new is further adjusted depending on the contact
technique employed, and the contact force, fcont, is updated by

∑
= −f

m V

t

Δ

Δ
i

i i
cont

cont

(7)

where VΔ i
cont is the adjusted velocity at node i and ∑i represents

summation over all related nodes.

(iv) In the function ‘Update state of particles’, the stresses and material
properties of particles are calculated with a constitutive model, and
the velocities and positions are updated by mapping the nodal
accelerations and velocities

∑= +V V S a tΔp p
i

ip i
new

(8)

∑= +X X S V tΔp p
i

ip i
new new

(9)

where XP represents the particle coordinates at the commencement of
the current step.

2.2. Parallelisation of MPM using MPI-CUDA

2.2.1. Domain decomposition and communication
Domain decomposition method is used with the MPI to distribute

the entire workload onto GPUs by dividing the computational domain
geometrically into a number of subdomains (Fig. 1). Each subdomain
includes the particles inside and the corresponding background mesh.
The parallelised MPM algorithm for each subdomain is essentially
calculated on a GPU with the CUDA, while some trivial operations
(such as updating the particle list of the nodes) on CPU is also required.
The detailed scheme of the workload distribution between CPU and
GPU can be referred to Dong et al. [9], which will also be described
later for the sake of completeness with slight improvements in terms of
contact strategy.

To maintain the continuity of the particle variables at the borders of
the subdomains, the interpolated information on the neighbouring
nodes (i.e. mass, momentum and internal force) by the function
‘Interpolation from particles to nodes’ at each incremental step is ex-
changed between the subdomains. The exchange is implemented with a
MPI send/recv communication in four steps (Fig. 2): (i) read the in-
formation, i.e. mass, momentum, and internal force, of the neigh-
bouring nodes on the global memory of the local GPU; (ii) copy to the
local Random Access Memory (RAM) with CUDA via PCI-Express; (iii)
copy to the target RAM with MPI send/recv communication via net-
work card; (iv) write to the global memory of the target GPU with
CUDA via PCI-Express. In step 2 and 3, the manipulation of the RAM is
performed by the CPU sending commands via the front side bus. At the
end of each incremental step, the positions of the particles are updated
with the function ‘Update state of particles’. As free to flow through the
background mesh, the particles tend naturally to cross the subdomains
and accordingly transit from one GPU to another. In that case, in-
formation of the crossing particles needs to be transferred from the
original subdomain to the new one in similar steps of the information
exchange of the neighbouring nodes.

Although the data exchanged represents a small amount of the total
calculated on each GPU, the overhead on the communication is non-

Y. Dong, J. Grabe Computers and Geotechnics 101 (2018) 149–158

150



Download English Version:

https://daneshyari.com/en/article/6709382

Download Persian Version:

https://daneshyari.com/article/6709382

Daneshyari.com

https://daneshyari.com/en/article/6709382
https://daneshyari.com/article/6709382
https://daneshyari.com

