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A new Petrov-Galerkin finite element method for two-dimensional (2D) highly advective flows in porous media,
which removes numerical oscillations and retains its precision compared to the conventional Galerkin finite
element method, is presented. A new continuous weighting function for quadratic elements is proposed.
Moreover, a numerical scheme is developed to ensure the weighting factors are accurately determined for 2D

non-uniform flows and 2D distorted elements. Finally, a series of numerical examples are performed to de-
monstrate the capability of the approach. Comparison against existing methods in the simulation of a benchmark
problem further verifies the robustness of the proposed method.

1. Introduction

Many engineering problems involve heat or solute transport by
means of both diffusion (or conduction) and advection. In those cases
where the latter is dominant, the flow is referred to as highly advective.
Examples where this phenomenon applies are ground source energy
systems (GSES) which utilise the thermal energy beneath the earth’s
surface, such as open-loop GSES.

In recent years, considerable effort has been placed into researching
the GSES systems due to their attractiveness as renewable energy
sources. In many cases, numerical methods have been employed to
investigate their behaviour and performance. However, finite element
modelling of highly advective flows can often be problematic as the
extensively used Galerkin finite element method (GFEM) may result in
spatial oscillations of the nodal solution. Several studies (e.g. [1-3])
have shown that the oscillations become more significant with in-
creasing Péclet number, which is a function of the properties of the
porous medium governing diffusion and the velocity of the fluid, as well
as the finite element size. Recently, Cui et al. [4] have also demon-
strated that the type of the element and the boundary condition em-
ployed affect the behaviour and magnitude of the oscillations. Although
the oscillations can be eliminated by refining the finite element mesh,
in problems such as those involving open-loop GSES, this approach
results in an extremely large number of elements, thus becoming
computationally expensive.

The deficiencies of the GFEM have led to the development of var-
ious upwind finite element methods to model highly advective flows.
The three main methods are ([5]): artificial diffusion, quadrature and

Petrov-Galerkin (PG). Artificial (or balancing) diffusion involves the
introduction of an extra term to the physical diffusion in the advection-
diffusion equation which can then be solved using the standard GFEM.
The main advantage of this approach is that it is easy to implement.
However, it may result in a reduction of accuracy during the transient
stage, as it alters the physics of the problem ([3]). The quadrature
technique was developed by Hughes [6] who suggested moving the
quadrature (or integration) points within the element for a more effi-
cient upwind effect. Conversely, the basic principle behind the PG
formulation is to modify the nodal weighting functions in order to
weigh the contribution from the upstream element more heavily than
that from the downstream one.

The first upwind formulation for steady state advection-diffusion
problems was proposed by Christie et al. [7] who modified the
weighting function for a one-dimensional (1D) linear element. Later,
the same approach was extended to two-dimensional (2D) linear ele-
ments by Heinrich et al. [8], as well as 1D and 2D quadratic elements by
Heinrich and Zienkiewicz [9]. Huyakorn [10] suggested using different
expressions for the weighting functions for 1D and 2D linear elements.
Upwinding of 1D cubic elements was explored by Christie and Mitchell
[11]. Kelly et al. [12] extended the technique to simulate a steady state
problem with a uniform inclined flow in a 2D mesh by adding an extra
diffusion term in the direction of flow to the advection-diffusion
equation. Later, Donea et al. [13] explored a different modification to
the steady state governing equation by studying quadratic elements. It
should be noted that modifying the weighting functions has the same
effect as adding artificial diffusion, provided only one-dimensional
steady state is considered. Hence, most of the abovementioned methods
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produce exact solutions for steady state advection—diffusion problems.

The problem of transient advection—diffusion was found to be more
challenging. The first solution to the transient problem for linear 1D
and 2D elements was proposed by Huyakorn and Nilkuha [14] and
Ramakrishnan [15]. While Huyakorn and Nilkuha [14] used the same
continuous weighting functions for linear elements as Huyakorn [10],
the time derivative term was weighted using the standard Galerkin
weighting functions which resulted in oscillating and over-diffused
solutions. Other researchers attempted to overcome the problem by
developing higher order weighting functions. Cubic expressions were
adopted by Ramakrishnan [15], who observed a reduction in accuracy
despite applying the modified weighting functions to all terms in the
advection—diffusion equation. Later, Dick [16] proposed weighting
functions which are a combination of continuous cubic and quadratic
expressions for 1D and 2D linear elements, whereas Westerink and Shea
[17] extended this approach to quartic weighting functions for 1D
quadratic elements. Cardle [18] applied different weighting functions
to the time derivative and the spatial derivative in the 1D ad-
vection—diffusion equation. Another approach to the transient problem
was suggested by Yu and Heinrich [19,20] who developed continuous
weighting functions which include time dependency (the bilinear
time-space shape functions). The same method with different expres-
sions for the time-space shape functions was adopted by Al-Khoury and
Bonnier [21].

Brooks and Hughes [5] developed the streamline upwind/Petrov-
Galerkin (SU/PG) method where discontinuous weighting functions,
instead of the continuous functions mentioned above, were used. In this
approach, multi-dimensional flows were also considered. However, the
weighting functions as well as the adopted weighting factors for multi-
dimensional cases were formulated provisionally, and Brooks and
Hughes [5] suggested further research should be carried out to obtain a
more rigorous approach for multi-dimensional cases. Based on the SU/
PG approach, further development and modification to this approach
were proposed in Hughes et al. [22] and Tezduyar and Park [23] (Shock
Capturing (SC) method), Hughes et al. [24] (Petrov-Galerkin Least
Square (PGSL) method), and Tezduyar and Ganjoo [25] and Codina
et al. [26] (time-space weighting functions). Compared to the original
SU/PG method, improved results were observed when multi-dimen-
sional highly advective flows were simulated. However, for the above-
mentioned methods, only results of problems involving flow through a
mesh with regular (e.g. square or rectangular) elements were shown,
while the performance in problems using irregular finite element me-
shes has not been demonstrated in the literature.

It is evident that some of the methods mentioned above (both in
one- and multi-dimensional forms) were observed to produce over-
diffused solutions. This reduction in accuracy was automatically as-
signed by some researchers in this field to all upwind techniques (e.g.
[27]). While this is true for the artificial diffusion approach, Brooks and
Hughes [5] argued that the Petrov-Galerkin finite element method
(PGFEM) does not experience this problem, provided appropriate
modified weighting functions are employed.

In the current study, the PGFEM with continuous weighting func-
tions is adopted and further developed. While examining the con-
tinuous weighting functions proposed in the literature, the authors
concluded that the use of the more complex higher order expressions
(e.g. [15,17]) is not necessary, and that the time-space shape functions
(e.g. [19,20]) are not compatible with the time marching scheme em-
ployed in the current paper. Additionally, it was also found that the PG
weighting formulation for 2D 8-noded quadratic elements proposed by
Heinrich and Zienkiewicz [9] cannot eliminate oscillations in either
steady state or transient analyses. In fact, in none of the above-
mentioned studies using continuous weighting functions (e.g. [8-11])
was the PGFEM successfully applied to both transient and steady state
problems.

As a result, a consistent PGFEM with continuous weighting func-
tions for solving the time-dependent advection—diffusion equation is
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proposed here, using both linear and quadratic elements. This scheme
adopts the weighting functions of Huyakorn [10] and Heinrich and
Zienkiewicz [9] for 1D linear and 1D quadratic elements, respectively,
while the approach of Heinrich et al. [8] and Huyakorn [10] is adopted
for weighting functions of 2D linear elements. However, a new for-
mulation for 2D quadratic elements is developed and presented in this
paper as the continuous formulation proposed by Heinrich and Zien-
kiewicz [9] was found to be inadequate. Furthermore, the modified
weighting functions are applied to all terms in the time-dependent
advection-diffusion equation which was not the case in some of the
existing approaches (e.g. [14]). Additionally, a new numerical scheme
for determining the Péclet numbers for 2D elements is also proposed, to
ensure that the method retains its accuracy in complex cases, such as
those involving 2D non-uniform flows (where both the flow direction
and velocity vary spatially) and those where 2D distorted elements may
be present. It should be noted that none of the PGFEMs available in the
literature has been shown to perform well for these types of problems.

For the purpose of demonstrating its capabilities, the newly pro-
posed PGFEM in this paper has been implemented into the finite ele-
ment software ICFEP ([28]), which is the authors’ bespoke computa-
tional platform and therefore allows access to source code, which is
crucial for this type of development. A series of numerical studies are
then performed, demonstrating the accuracy and stability of the new
formulation for both transient and steady-state cases at different levels
of complexity. Comparisons were also made between the proposed
method and other methods using discontinuous weighting functions,
such as the SU/PG and the SC methods, in the simulation of a multi-
dimensional case widely documented in the literature (e.g. [22,23]).
Finally, the paper demonstrates the excellent performance of the pro-
posed PGFEM in simulating challenging multi-dimensional flow pro-
blems involving distorted elements where both flow velocity and flow
direction vary across an element, which have not been shown anywhere
in the available literature.

2. Fundamentals of FE modelling of convective flows in porous
media

2.1. Coupled thermo-hydraulic formulation

Numerical modelling of convective flows in porous media requires
the simulation of pore fluid flow coupled with heat transfer through
both diffusion and advection, which is generally referred to as a cou-
pled thermo-hydraulic (TH) problem. For incompressible pore fluid
flow in a fully saturated porous medium, the continuity equation must
be satisfied, which can be expressed as:
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where v,, v, and v, are the components of the velocity of the pore fluid
in the x, y and z directions, respectively, ¢, is the volumetric strain due
to stress changes, Q/ represents any pore fluid sources and/or sinks, and
t is time. The seepage velocity, {v}’ = {Vx Vy V}T, is assumed to be
governed by Darcy’s law, which can be written as:

{vr} = —[kf1{Vh} @

where [ky] is the permeability matrix and Vh is the gradient of the
hydraulic head. In a coupled thermo-hydraulic problem, if it is assumed
that: (a) the effects of temperature gradients and spatial variations in
fluid density (e.g. buoyancy-driven flows) on pore fluid flow through a
fully saturated porous medium are negligible and (b) the solid phase is
rigid, Eq. (1) reduces to the equation of seepage, which can be ex-
pressed as:
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Assuming an instantaneous temperature equilibration between the fluid
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