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a b s t r a c t

A significant step forward in modelling polymer melt rheology has been the introduction of the Pom-Pom
constitutive model of McLeish and Larson [T.C.B. McLeish, R.G. Larson, Molecular constitutive equa-
tions for a class of branched polymers: the Pom-Pom polymer, J. Rheol. 42 (1) (1998) 81–110]. Various
modifications of the Pom-Pom model have been published over the years in order to overcome sev-
eral inconveniences of the original model. Amongst those modified models, the eXtended Pom-Pom
(XPP) model of Verbeeten et. al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitu-
tive equations for polymer melts: the extended Pom-Pom model, J. Rheol. 45 (4) (2001) 823–843] has
received quite some attention. However, the XPP model has been criticized for the generation of mul-
tiple and unphysical solutions. This paper deals with two issues. First, in the XPP model, anisotropy is
implemented in a Giesekus-like manner which is known to result in unphysical solutions for non-linear
parameter values ˛ ≥ 0.5. Hence, we put forward the conjecture that a similar limitation holds for the
XPP model. In the present paper, the limits for the anisotropy parameter are elaborated on and result to
be most restraining at high deformation rates where the backbone tube is oriented and the backbone tube
stretch approaches the number of arms q. By restricting the anisotropy parameter to a maximum critical
value the XPP model produces only one solution, which is the correct physical rheology. In the second
part we show that, contrary to the results published by Inkson and Phillips [N.J. Inkson, T.N. Phillips,
Unphysical phenomena associated with the extended Pom-Pom model in steady flow, J. Non-Newton.
Fluid 145 (2–3) (2007) 92–101], for the special case where the anisotropy parameter equals zero, only one
physically relevant solution exists in unaxial extensional. In addition to this physically relevant solution,
also solutions exist in the physically unattainable part of the conformation space. However, the existence
of these physically unattainable solutions is not a unique feature of the XPP model but rather general for
non-linear differential type rheological equations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The processing of polymer materials has a large influence on the
dimensional, mechanical, and optical properties of the end prod-
uct. The complex rheological behaviour typically encountered in
macromolecular fluids is an important reason for that influence. In
order to predict the viscoelastic behaviour of polymer melts, simu-
lation tools have been developed, which need constitutive models
that can adequately model the polymer dynamics. A significant step
forward in modelling polymer melt rheology has been the intro-
duction of the Pom-Pom constitutive model [7]. This model is able
to quantitatively predict the correct nonlinear behaviour in both
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shear and extension simultaneously for branched materials, such
as low density polyethylene melts.

Various modifications of the Pom-Pom model have been pub-
lished over the years in order to overcome several inconveniences
of the original model [2,3,8,9,12]. Amongst those modified models,
the eXtended Pom-Pom (XPP) model [12] has received quite some
attention. This particular model was successfully implemented in
a finite element code and was able to satisfactorily predict the
behaviour of a commercial LDPE melt in complex flow geometries
in a quantitative manner [13,14].

Several authors have criticized the XPP model for both mathe-
matical defects [3] and unphysical solutions [3,5]. Both seemingly
alarming issues have each their own specific, yet simple solution.
On the one hand, the mathematical defects will mostly be critical
in numerical computations in the vicinity of geometric singulari-
ties. These can be circumvented by choosing the double-equation
version of the XPP model, referred to as DXPP, as mentioned by
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Verbeeten et al. [12] and Clemeur et al. [3]. On the other hand,
the unphysical solutions, such as turning points [3] and bifurca-
tion and multiple solutions [3,5], were shown to be related to the
anisotropy parameter ˛. This parameter was introduced to produce
a non-vanishing second normal stress difference. By restricting this
parameter to a maximum critical value, the correct physical solu-
tions do exist and will be encountered starting from an admissible
initial conformation tensor. The restriction still leaves enough free-
dom to fit the second normal stress difference.

Clemeur et al. [3] propose to use the double-equation version of
the eXtended Pom-Pom model and setting the anisotropy param-
eter ˛ = 0. In this way, they avoid the mathematical defects of
the single-equation version and by choosing ˛ = 0, bifurcation and
multiple solutions are also ommited. This unfortunately comes
at the cost of losing the second normal stress difference. They
suggest an alternative way of introducing a non-vanishing sec-
ond normal stress coefficient by combining both an upper- and
lower-convected time derivative, similar to Johnson and Segal-
man [6]. However, such a combination of an upper-convected
and lower-convected time derivative does not fit within the
thermodynamic framework GENERIC [10], i.e. combinations are
thermodynamically not allowed and a purely upper-convected or
purely lower-convected time derivative is preferred.

Since the anisotropy parameter in the XPP model is Giesekus-
like and the anisotropy parameter ˛ in the Giesekus model is
restricted [11], it is expected that some restrictions are also present
for the ˛-parameter in the XPP model. The objective of the present
paper is to indicate the limits for the ˛-parameter of the XPP model
in order to avoid unphysical and multiple solutions.

2. Modelling

To realistically describe the viscoelastic stresses of polymer
fluids over a broad range of deformation rates, a multi-mode
approximation of the extra-stress tensor � is defined as

� =
M∑

i=1

Gi (ci − I) . (1)

Here M is the total number of different relaxation times, Gi is the
shear modulus of the ith relaxation mode, ci is the conformation
tensor, and I is the unit tensor. The conformation tensor of the ith
relaxation mode is defined as

ci = 3�2
i Si, (2)

with �i the backbone stretch and Si the orientation tensor of the
backbone tube. In the remainder of this paper we will restrict our-
selves to a single mode description of the constitutive behavior and
omit the subscript i.

For the eXtended Pom-Pom (XPP) model, time evolution of the
conformation tensor follows from

�b
∇
c + [f (c) − 2˛] c + ˛c2 + (˛ − 1) I = 0, (3)

in which the function f (c) is given by

f (c) = 2r e�(�−1)
(

1 − 1
�

)
+ 1

�2

[
1 − ˛ − ˛

3
tr(c2 − 2c)

]
. (4)

Here �b is the relaxation time of the backbone tube orientation,
taken from the linear relaxation spectrum. ˛ is the anisotropy
parameter that influences the second normal stress difference,
r = �b/�s with �s the relaxation time for the tube stretch, while �
is a parameter determining the influence of the surrounding poly-
mer chains on the backbone tube stretch and is defined as � = 2/q,
where q denotes the amount of arms at the end of a backbone.
Since the trace operator acting on the orientation tensor yields 1
by definition, the backbone stretch is defined as � =

√
tr(c)/3.

Eqs. (1)–(4) give the same XPP model as given in Clemeur et al.
[3] and Inkson and Phillips [5]. However, instead of being written
in terms of the orientation tensor S and backbone tube stretch �
or extra-stress tensor � , it is written in terms of the conformation
tensor c.

A more appropiate equation for the function f (c), consistent
with the thermodynamical framework GENERIC [8,14], reads

f (c) = 2r e�(�−1)
(

1 − 1
�2

)
+ 1

�2

[
1 − ˛ − ˛

3
tr(c2 − 2c)

]
. (5)

Since the introduction of the second normal stress difference
is Giesekus-like by means of the anisotropy parameter ˛, and that
parameter in the Giesekus model is restricted [11], the evolution
equation of the Giesekus conformation tensor is also given for com-
parison

�
∇
c + [1 − 2˛] c + ˛c2 + (˛ − 1) I = 0, (6)

with � the linear relaxation time.

3. Anisotropy parameter restrictions

Our starting point is the limitation on the parameter ˛ in the
Giesekus model, 0 ≤ ˛ ≤ (1/2), as suggested by Bird et al. [1] and
later by Schleininger and Weinacht [11], studying the linear sta-
bility of Couette flow. The restriction ensures that the Giesekus
model does not give solutions with a maximum in the shear or
elongational stress, leading to unstable, non-physical solutions. The
restriction also ensures that the linear term in Eq. (6) ([1 − 2˛]c),
is positive. We put forward the conjecture that a similar limitation
holds for the XPP model, but we are not able to give a formal prove
for this and maybe this is not even possible. However, all numeri-
cal experiments that we have performed as well as all relevant data
obtained from literature support this conjecture. Also a violation of
our proposed limitation on ˛ may lead to the flow condition that
no steady state solution exists beyond some finite value of �2 (see
Appendix A). With this as a starting point and considering the corre-
sponding term in the XPP model [f (c) − 2˛]c, the restriction we put
forward reads [f (c) − 2˛] ≥ 0. This leads to a positive linear term in
the XPP model. In this way, the maximum anisotropy parameter ˛
allowed becomes a function of the other material parameters and
the conformation tensor c, and thus depends on the stretch and
orientation.

For low shear and elongational rates, stretch and orientation
are limited which implies that f (c) ≈ 1 and the behavior of the
XPP model reduces to the behavior of the Giesekus model. How-
ever, at high deformation rates, f (c) changes significantly and,
for given ratio r and number of arms q, the critical value of ˛
becomes a function of the applied deformation rate. Computation-
ally, this can be confirmed by computing the values of the function
g(c) = [f (c) − 2˛] for a relevant series of deformation rates and val-
ues of ˛. Contours of g = 0, as shown in Fig. 1, reveal the dependence
of the maximum value for ˛ as a function of the applied shear or
extensional rate. The figure shows that, for fixed ratio of relaxation
times r and increasing number of arms q, the minimum allowable
value for ˛ appears at high shear or elongational rate. In addition, it
shows that the minimum allowable value for ˛ is different in shear
and uniaxial extension and appears at different deformation rates.

In order to find an expression for the maximum allowable value
of ˛ in general complex flows (denoted by ˛max) we write the
function g(c) in the following way:

g(c) = 1
�2

[
2r e�(�−1)(�2 − �) + 1 − ˛(1 + 3�4tr(S2))

]
. (7)

The possible values for c (and thus also of � and tr(S2)) of the
XPP model lie on a surface in (c1, c2, c3)-space, where (c1, c2, c3)
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