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A B S T R A C T

A random generation method of periodic mesostructures of soil-rock mixtures based on random polygon is
proposed and used in the generation of an RVE model. A code for generating a periodic mesh and periodic
boundary is developed for the numerical simulation. Macroscopic elastic parameters of the SRMs are calculated
based on the simulation using numerical homogenization. The elastic modulus shows a size effect, namely, the
modulus deceases gradually with an increase in the model size. The border effect is related to the model size and
is large in small-sized models. Rock aggregates arranged in a certain direction induce property anisotropy.

1. Introduction

An SRM is a common geomaterial widely distributed in the south-
west region of China that exhibits rich hydropower resources. Often
encountered in huge volumes in some large-scale hydraulic engineering
projects, SRMs present a ground instability risk during project con-
struction and operation. For example, large-scale landslides of SRMs
have occurred at the Liangjiaren (1.35×106 m3)[1] and Tangjiashan
(2.04×107 m3)[2] hydropower station construction sites. These SRM
landslides can cause severe damage to hydroelectric projects and en-
danger human lives. Therefore, the study of the mechanical properties
of SRMs is very important for the safe construction of hydropower
engineering structures with SRM geomaterials nearby.

A SRM is a highly heterogeneous medium composed of rock and soil
(Fig. 1). Many studies on the mechanical properties of SRMs indicate
that the mesostructure of an SRM is complicated, and features of the
mesostructure such as the fraction and distribution of the rock ag-
gregate play an important role in defining the macromechanical prop-
erties of the SRM [3–6]. Due to the size-dependent characteristics of the
material, it is difficult and time-consuming to carry out in situ and la-
boratory experiments at a scale relevant to an engineering design [6].
Fortunately, numerical analysis provides an efficient way to analyze the
physical and mechanical behaviors of heterogeneous geomaterials [7].
However, generating a model that is analogous with reality is the
prerequisite of successful numerical simulations.

As for the numerical modeling of an SRM, the emphasis is on the
characteristics of the rock aggregate, and there are two main methods
to build SRM models. One method is a digital image processing-based
numerical analysis. This method first obtains images of an SRM through
techniques such as photography, CT or X-ray imaging methods, and
analyzes the images using a digital image processing (DIP) method.
Afterwards, numerical models are built based on the processed images.
For example, Yue et al. [8] proposed a method for the vectorization of a
bitmap of geotechnical materials. Based on the images obtained by the
DIP method, Xu et al. [4,9] studied the strength of an SRM by a finite
element method (FEM) and a discrete element method (DEM). Yan and
Meng [10] proposed a connected-component-labeling-based DIP algo-
rithm and studied the seepage properties of the SRM.

Another efficient and powerful method is computer simulation
using randomly generated mesostructures of the heterogeneous media.
Wang et al. [11] used this method to simulate the deformation behavior
of concrete. Caballero et al. [12] extended the method from 2D to 3D
concrete models. Recently, Xu et al. [2,9] employed this method for
SRM and developed a general program for both 2D and 3D problems.
Tsesarsky et al. [13] analyzed the elastic moduli and anisotropy of
bimrocks (blocks-in-matrix rocks) using a computational homogeniza-
tion method with a simplification of the rock blocks.

Despite the progress made to date, there is a clear boundary be-
tween the macro- and mesoscopic length scales, and bridging this scale
range is important for some engineering applications of the numerical
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methods. For hydraulic engineering projects, the macroscopic scale is
approximately several kilometers, while the mesoscopic scale is in
decimeters. Most studies are based on a single scale analysis and neglect
multiscale properties. Traditional stress and strain boundary conditions
cannot satisfy both the stress continuity and deformation compatibility
conditions from a two-scale perspective. In this situation, numerical
homogenization is an efficient way to determine the effective macro-
scopic properties of an SRM, and the theory and applications of the
numerical homogenization method can be found in Hassani and Hinton
[14–16].

Our study first proposes a novel random model generation method
for SRMs with periodic mesostructures. An automatic program is de-
veloped, and methods for periodic mesh generation and periodic
boundary condition (PBC) implementation are proposed and im-
plemented. A parametric study of the elastic parameters of an SRM is
conducted using the numerical homogenization method. The influence
of model size, rock aggregate orientation and fraction on the macro-
scopic elastic parameters of SRM is investigated.

2. Theory of homogenization

2.1. Asymptotic expansion theory

The idea of homogenization is that a heterogeneous medium with a
complex mesostructure can be replaced by an equivalent homogeneous
material (Fig. 2). Homogenization relies on an asymptotic expansion of

the governing equations, which allows for a separation of scales [17].
Wang et al. [18] proposed a simplified analytical homogenization
method to model the behavior of a mixed soil. Currently, homo-
genization theory has become a mature theory and is widely used in
estimating the macroscopic properties of heterogeneous materials [19].

Referring to Yuan and Fish [20], a typical two-scale asymptotic
expansion of the displacement field u can be written as:
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where ui
ξ is the displacement, subscript i indicates the dimension and

superscripts 0, 1, and 2 represent the order of differentiation. x is a
position vector in the macroscopic coordinate system, and y is a posi-
tion vector with Y-periodicity in the microscopic coordinate system.
The two scales are related through a scale factor ξ (0 < ξ≪ 1) with

= ξx y/ and O h( ) is a higher-order small value.
Inserting the asymptotic expansion of displacement field into the

strong form of boundary value problem (BVP) for the linear elasto-
statics, two uncoupled problems can be decomposed. The macroscopic
BVP finds the solution of the macroscopic displacement ui

c on domain Ω
with surface Γu such that:
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where Lijmn is the equivalent material matrix, subscript xj means the
gradient operation in the macroscopic coordinate system and σij, bi, u ,
and ti are the macroscale stress, body force, prescribed boundary dis-
placement, and traction, respectively. εlm is the macroscale strain
component that is defined as:
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The microscopic BVP finds the solution of the influence function
χ y( )imn on Θ such that:
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and Θ is the domain of the unit cell, ∂Θ, which indicates the domain
boundary and ∂Θvert are the domain vertices.The equivalent material
matrix can be obtained by volumetrically averaging the numerical so-
lutions of the unit cells and is given as:
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where σij
mn are the microscale stresses induced by applying a unit per-

iodic strain εmn
c in Eq. (5):
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2.2. Numerical implementation

It is seen from the above discussion that the homogenized material
property is estimated through the volume average of the numerical
analysis result of a unit cell. A unit cell is required to be a representative
volume element (RVE). In addition, it is noted that the boundary con-
dition of the unit cell is periodic, and a general expression of the

Fig. 1. Typical mesostructure of an SRM.

Fig. 2. Illustration of numerical homogenization.
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