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A B S T R A C T

In this paper, an analytical model is developed to estimate the buckling behavior of tapered friction piles fully
embedded in inhomogeneous soil. The governing differential equation of the problem is derived with associated
boundary conditions and is solved by using the Runge-Kutta method in combination with the Regula-Falsi
method. Numerical examples for calculated buckling loads and buckled shapes are given to highlight the in-
troduction of dimensionless variables related to the tapering and shaft friction of the pile, soil inhomogeneity
and pile-soil stiffness as well as the degrees of freedom at the both ends of the pile.

1. Introduction

The buckling instability of long slender piles particularly in soft soils
is a key consideration in geoengineering design. Potential buckling
failure exists when slender piles are embedded in soft soil, erodible soil
and liquefiable soil [1–4]. Furthermore, with the ongoing evolution of
pile applications to include higher capacity (i.e., higher allowable
stress) of the pile cross section the common design practices that fully
embedded piles will not buckle before yielding of the pile cross section
is no longer valid [2].

Extensive studies have been performed on the buckling response of
axially loaded piles. An early approach for the stability of beams on
elastic foundations by Hetenyi [5] may be extended to the buckling
analysis of piles supported laterally by elastic foundations. For example,
Bjerrum [6] derived exact solutions for the buckling load of piles
pinned top and bottom. He also compared the calculated buckling loads
to test data from pile load tests in soft clay. Davisson and his coworker
[7,8] investigated the effects of partial embedment and different de-
grees of freedom at the ends of the pile on the buckling behavior.
Prakash [9] used the energy method to compute the buckling capacity
of piles. West et al. [10] presented buckling loads of piles and the
corresponding clustering pattern of buckling modes. By considering the
nonlinear lateral soil support (bi-linear p-y curves), Vogt et al. [2]
evaluated the inelastic buckling of pinned-pinned piles and validated
the obtained results by comparing with model test data as well as re-
sults from loading tests on 4m long slender piles supported by soft clay.
Chen et al. [11] employed the cusp catastrophe theory to construct the
mathematical model for assessing the buckling load of piles. Deng et al.
[12] derived an equation for the instability of piles supported by the

modified Vlasov foundation model and provided numerical buckling
solutions by the vibrational approach. Recently, Lee [13] elucidated the
influences of tapering and cross section shape on the buckling of piles
whose volumes are always held in constant. In the abovementioned
analyses, however, it was assumed that the axial load is constant along
the pile, that is, no load transfer occurs throughout the pile shaft and
which is thus applicable for relatively short stubby end-bearing piles. It
seems likely that the shaft resistance along the pile affects the buckling
of the friction piles. There only exists a few solutions that take into
account shaft friction of the pile-soil system. These have been done for
straight friction piles by using the energy method [14], Rayleigh-Ritz
method [15] and modal clustering technique [16]. However, to the best
knowledge of the authors, the buckling of tapered friction piles has not
been studied in the open literature.

The aim of this study is to introduce an analytical model to deal
with the buckling of tapered piles that take into account both the lateral
stiffness and shaft friction. The governing equation of fully embedded
tapered friction piles with different boundary conditions is derived and
solved numerically. The versatility of the proposed approach is illu-
strated using numerical examples of the pile-soil system for a wide
range of values of geometric parameters and material properties. The
obtained results for simplified cases of the current problem are com-
pared with available analytical solutions.

2. Formulation

Fig. 1(a) shows a fully embedded vertical pile defined using the
Cartesian coordinate system (x, y) with length L in the x direction and
radius r in the y direction. The pile is elastic, homogeneous, and circular
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in cross section, but the radius can vary longitudinally. Linear variation
is considered for the length of the pile as
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where m is the taper ratio, defined as
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in which, rb and rt are the radii at the pile base and top, respectively. In
this study, the pile is treated to be tapered down with depth, i.e.,
0≤m≤ 1. The pile radius at any depth is given by

=r r Tt x (3)

Putting x= L/2 in Eq. (1) and using Eq. (3), the radius at the
midpoint of the pile length re is obtained as
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where = +m m 11 .
Note that owing to the linear taper of the pile, the midpoint radius is

equal to the mean pile radius through the embedded length. The dia-
meter we, perimeter ue and moment of inertia Ie of the cross section at
the midpoint are expressed as
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In a similar manner, the diameter w, perimeter u and moment in-
ertia I at any depth are estimated by using Eq. (3) with Eq. (5):
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For a fully embedded pile, the soil lateral stiffness may be re-
presented by an elastic Winkler foundation with a linearly increasing
coefficient of subgrade reaction in unit of force per length3 [17]. The
coefficient of subgrade reaction with depth can be written as

=k k Ht x (7)
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where n is the soil inhomogeneity, defined as
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in which, kb and kt are the coefficient of horizontal subgrade reaction at
the pile base and top, respectively. The coefficient of subgrade reaction
for x= L/2 is obtained as
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where = +n n 11 . The combination of Eqs. (7) and (10) allows the
coefficient of subgrade reaction profile k to be determined:
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As illustrated in Fig. 1(a), the pile is subjected to an axial com-
pressive load P at its top and a reactive force Pb at its base. The inter-
actions between the pile and surrounding soil are denoted by f as side
resistance acting on the annular surface at depth per unit length of the
pile (known as unit shaft friction). Fig. 1(b) shows the stress resultants
of an infinitesimal element of the deformed pile, generated by the ap-
plied compressive load. Based on the free body diagram, the ordinary
differential equation is derived by satisfying the equilibrium of the pile
element:
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where N, V andM are the axial and shear forces and bending moment in
the pile, respectively. By using the stress-strain relationship of the pile
element, i.e.,
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Fig. 1. Schematics of proposed model: (a) tapered
friction circular pile; (b) deflection and forces on pile
element.
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